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1. INTRODUCAO

O projeto aqui apresentado propde a utilizacao do Filtro de Kalman para
condicionamento de sinais adquiridos por sensores ultrassonicos presentes no
novo tanque de provas fisico do TPN (Tanque de Provas Numérico), denominado
Calibrador Hidrodinamico (CHTPN). Estes sensores sao montados na parte frontal
de cada um dos 148 batedores (flaps) do tanque, e sdo responsaveis pela medida
da altura da onda incidente no batedor. Esta medida é diretamente utilizada no
algoritmo de absorc¢do ativa de ondas, que é o grande diferencial deste tanque de

provas.

Atualmente os sinais apresentam ruido e distor¢ao, devido principalmente
a problemas mecanicos como imperfeicdes na montagem dos sensores e nos
dispositivos denominados “guias de onda”, que sdo canaletas com o intuito de
melhorar as condi¢des da superficie da 4gua na regido da medi¢do, melhorando o

sinal de ultrassom.

Visando-se obter um sinal mais preciso da altura de onda em cada flap, é
proposta a utilizagdo do Filtro de Kalman, que é um filtro “inteligente”, pois leva
em consideracao a modelagem do sistema e faz previsdes da medicdo, ponderando
essas previsdes com o valor adquirido de fato no sensor. Outra caracteristica
interessante deste tipo de filtro é que ele permite a chamada fusdo sensorial, ou

seja, a utilizacdo de mais de um sensor para avaliar cada medida.

Uma das primeiras aplicacdes notaveis deste filtro foi na estimativa de
trajetdria dos foguetes Apollo. Outras aplicacdes de destaque sdo para sistemas de
navegacao e posicionamento dos Onibus espaciais da NASA (Space Shuttle) e da
Estacdo Espacial Internacional (ISS), além da larga utilizacdo em sistemas de

posicionamento dinamico (DP) de navios e plataformas petroliferas.



2. METODOLOGIA

O trabalho é dividido, basicamente, em cinco etapas principais:
= Estudo tedrico
* Implementagdo offline
* Implementagao online
» Testes e coleta de dados

* Documentagdo dos resultados

A etapa do estudo tedérico compreende, primeiramente, a definicdo do
problema, que deve ser feita de maneira bastante objetiva, estabelecendo
claramente as condi¢des antes do inicio do trabalho, bem como os resultados a que
se pretende chegar. Posteriormente sdo estudadas tanto a formulacao do Filtro de

Kalman como a modelagem do problema real, anteriormente definido.

A implementacao foi dividida em duas partes. A primeira, denominada
offline, serve como avaliacdo da viabilidade de implantagdo do Filtro na pratica.
Nesta etapa, sdo utilizados sinais adquiridos de antemao em ensaios no tanque de
provas, que servem de entrada para os programas de teste do Filtro. Uma vez
verificados o funcionamento do Filtro e a melhoria no sinal de altura da onda,
pode-se entdo partir para a implementagdo online no CH-TPN, que consiste,
basicamente, em adaptar o programa desenvolvido na etapa offline de maneira que
possa ser executado em tempo real, junto ao sistema de controle ja existente no

tanque (baseado na ferramenta Simulink do MATLAB).

Apos os desafios na implementagdo online, passa-se para testes do Filtro e
coleta de dados para posterior andlise e avaliacdo final do resultado da
implementacgdo, para que se tenha uma medida objetiva da efetividade do Filtro de

Kalman nesta aplicac¢ao.



3. ESTUDO TEORICO

3.1. Introdu¢ao do problema

O Calibrador Hidrodinamico (CHTPN) é um tanque quadrado, com 14 m de
lado e cerca de 4 m de profundidade, que opera em frequéncias de ondas de 0,25

até 3 Hz, e podendo gerar ondas de até 40 cm de altura [1].

Figura 3.1 - Imagem do Calibrador Hidrodinamico do TPN

A medicdo da altura de onda é realizada por sensores ultrassonicos
instalados em cada um dos 152 flaps do tanque. Aqui, vale frisar que, embora haja
152 flaps, apenas 148 sado utilizados para geracdo e absorcao de ondas, visto que 4
deles sdo fixos (para impedir a colisdo dos flaps dos cantos do tanque). A medicao é
feita valendo-se da técnica de pulso-eco, ou seja, o transdutor de ultrassom emite
um pulso que se propaga na direcdo vertical para cima, pela guia de onda, €, ao
chegar a superficie da agua, retorna ao transdutor. Como a velocidade de

propagacado do pulso de ultrassom na agua é conhecida, pelo tempo entre o envio



do pulso e seu retorno (eco), é possivel calcular a altura de onda média neste
periodo. A altura de onda, bem como todo algoritmo de controle do tanque, roda a
um periodo de amostragem de 12 ms, ou seja, a uma taxa de aproximadamente

83,33 Hz.

O problema enfrentado atualmente é que, em alguns momentos,
principalmente na crista das ondas (por¢do superior da ondulacdo), existem ecos
espurios que distorcem a medicao da altura de ondas, como evidenciado na figura

3.2, a seguir. Observa-se que, na subida da onda, ocorrem perdas na altura.
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Figura 3.2 - Sinal de altura de onda em sensor ruidoso

Estes ruidos no sinal da altura de onda comprometem severamente a
absorcao de ondas, pois os flaps passam a vibrar e gerar outras ondas. A ideia,
entdo, é utilizar o Filtro de Kalman para filtrar estas perdas de sinal e tentar obter

um sinal menos ruidoso da altura de onda, e sem perdas de amplitude.

Como medida paliativa, atualmente o CHTPN utiliza dois recursos para

minimizar o efeito causado pelos sinais ruidosos.



Primeiramente, é utilizando um mapeamento dos sensores e flaps, ou seja,
flaps com sensores muito ruidosos utilizam os sinais de sensores dos flaps
adjacentes (foi estabelecido um maximo de 3 flaps com o mesmo sensor). Isso
implica que os flaps se movem em blocos, o que reduz a eficiéncia da absorgao de

ondas com direc¢do diferente da perpendicular a parede.

A segunda estratégia, ja para melhoria do sinal propriamente dito, é a
utilizagdo de um filtro passa baixas nos sinais de altura de onda. Este tem o
inconveniente de atrasar o sinal significativamente, o que também compromete a

absorg¢ao.

Vale ressaltar que, neste trabalho, ha dois tipos de ondas que serdo
estudadas e condicionadas: ondas regulares e irregulares. As ondas regulares sao
ondas que possuem frequéncia Unica durante todo o ensaio. J4 as ondas irregulares
sdo geradas baseadas num espectro determinado, contendo componentes em

diversas frequéncias.

Como metas estabelecidas no inicio do trabalho, acredita-se que, com a
utilizacao do Filtro de Kalman, seja possivel melhorar a absor¢do de ondas, que até
entdo é de cerca de 80 a 90%, para valores entre 90 e 95%, que é o valor
originalmente esperado para o CHTPN. Além disso, espera-se que o Filtro
possibilite a absorcdo de ondas em todas as diregdes, isto é, deseja-se que seja
possivel remover o mapeamento anteriormente estabelecido e utilizar todos os

sensores e flaps independentemente.

3.2. Apresentacao do Filtro de Kalman

O Filtro de Kalman estima o estado de um processo em um determinado
instante de tempo através da comparagcdo de um modelo matematico com as
medicdes efetuadas por sensores, ponderando entre os erros de modelagem e de
medicdes, na busca de uma estimativa 6tima. As equagdes utilizadas pelo Filtro

podem ser divididas em dois grupos:



= equagdes responsaveis por projetar o estado atual, juntamente com o
erro de predicdo, para o préximo instante de tempo, ainda sem o uso
de medidas de sensores (estimativa a priori);

= equagOes responsaveis por incorporar a predi¢do feita anteriormente
uma medicdo realizada, obtendo-se assim uma estimativa 6tima

(estimativa a posteriori).

3.3. O Filtro de Kalman Discreto

Neste capitulo, dois conceitos fundamentais para o trabalho sdo abordados
de forma detalhada, de acordo com as referéncias [2], [3] e [4]. Estes conceitos

sdo: a estrutura de predicao e correcao; e o ganho do Filtro de Kalman.

3.3.1. Estrutura de Predicao e Correcao

Nesta secdo sera apresentado como um Filtro de Kalman opera e

verificada sua estrutura de predi¢do e correcdo (Predictor-Corrector Structure).

3.3.1.1. Predicao

Este é o primeiro passo realizado pelo Filtro de Kalman (Prediction Step).
Nele, o estado atual é obtido através da predi¢cdo baseada no estado anterior e no
modelo do sistema.

Um sistema dindmico, modelado no Espaco de Estados, é descrito pela

seguinte equacao:

X, = A- Xp-1 t B - Uy + Wi_1 (31)

onde:

X € ovetor de estado; o qual se deseja estimar;
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A é a matriz de estado; que relaciona o estado de um determinado passo (k-1) ao
estado do passo atual (k). Esta matriz descreve como o estado do sistema varia
entre dois instantes consecutivos e é obtida a partir do modelo fisico do sistema;

B é a matriz de entrada; que relaciona o sinal de controle u; com o estado xj, . Esta
matriz também é obtida pelo modelo do sistema;

uy € o vetor de controle;

w; representa a incerteza do modelo. Na modelagem do Filtro de Kalman, é
pressuposto que a incerteza é um sinal aleatério e tem aproximadamente uma

distribuicao Normal, de média nula e covariancia Q:

p(w) ~N(0,Q)

onde Q representa a incerteza do modelo.

Uma vez estimado o estado no passo k, obtém-se a amostra z; neste

mesmo passo, de acordo com o seguinte modelo:

Zy =H'Xk+l7k (32)

onde:

H é a matriz que relaciona o estado a amostra. Ela descreve como a medida
depende do estado;

v, representa o ruido de medida. Na modelagem do Filtro de Kalman, é

pressuposto que o ruido de medida é aproximadamente um ruido branco

Gaussiano de média nula e covariancia R:

p(v) ~N(0,R)

onde: R representa a incerteza da amostra.

Baseando-se na equacgao 3.1, o Filtro de Kalman determina a primeira

estimativa (a priori) utilizando a seguinte equacao de predicao:

11



J’Z']_( =A- J,Z'k—l +B- Uy, (33)

onde:

X, é o estado estimado a priori no passo k a partir do conhecimento do estado no
passo k-1;
X, € o estado estimado a posteriori no passo k a partir do conhecimento da

amostra zy.

Ainda neste primeiro passo, o Filtro de Kalman calcula, através da seguinte

equacdo, a incerteza na extrapolacdo para prever o estado seguinte (P;) [3].

P; =A-Py_-AT+Q (3.4)

3.3.1.2. Correcao

No passo seguinte, o Filtro ira corrigir sua primeira estimativa, obtida no
primeiro passo, baseando-se na medida recebida do sensor ultrassonico localizado
no batedor. Para que essa correcao seja feita, é preciso calcular o ganho de Kalman
(K§), que sera apresentado na proxima secao. O resultado deste segundo passo é
uma nova estimativa do estado do sistema (a posteriori). Pode-se verificar, na
equacdo 3.5, abaixo, que esta nova estimativa é na verdade o estado estimado a
priori somado de um fator de correcdo proporcional a diferenga entre a medida
adquirida e a predicao de qual seria essa medida. Isto indica porque o segundo
passo é conhecido como o passo de correcio. E importante também ressaltar que a
diferenca entre a medida e a estimativa da medida é chamada Inovacao ou

Residuo:

R =%+ Ky (2 - H- %) (3.5)

Por fim, o erro P é atualizado de acordo com a seguinte equacao [3]:

12



P,=(U-K,-H) Py (3.6)

Monta-se, entdo, a estrutura do algoritmo do Filto de Kalman da seguinte

maneira:

Predicao Correcao
Ki=Pg-H - (H-Pi-H +R)™?
R = A Ryq + By, |

T r—— Pk=(1—KkH)P£

| Estimativas Iniciais

Figura 3.3 - Estrutura de Predicao e Correcao do Filtro de Kalman

3.3.2. Ganho do Filtro de Kalman

O ganho do Filtro de Kalman tem como objetivo minimizar a incerteza da
estimativa do estado. Ele trabalha levando em consideragdo as ponderagdes que
sdo atribuidas ao valor medido e ao valor obtido pelo modelo, ou seja, se a
incerteza da medida for muito grande e o modelo bastante confiavel, deve-se dar
uma importancia maior ao valor obtido pelo modelo, o que fara com que o ganho
do Filtro de Kalman seja pequeno, e isso resulta em uma menor tendéncia dos
resultados filtrados seguirem o sinal amostrado. J& em um segundo caso, onde o
modelo gera uma grande incerteza de seus resultados, mas a medida é mais
confiavel, da-se maior peso ao valor obtido pelo sensor, fazendo com que o
resultado filtrado tenha uma maior tendéncia de seguir o sinal amostrado. Para se

calcular o ganho de Kalman é utilizada a seguinte férmula:

K,=P, -H -(H-P;-H +R)! 3.7
k k k
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3.4. Modelos Matematicos

Neste capitulo, é apresentado o modelo matematico adotado, que descreve
o movimento do menisco da onda que incide sobre os batedores (flaps), nos quais

os sensores ultrassonicos se localizam.

3.4.1. Modelo de onda regular

Para pequenas amplitudes e valores de nimero de onda (k = 2m/4), como
no caso do CHTPN, a equacgao que rege o movimento de uma onda regular na dgua
pode ser simplificada por uma senéide. Entdo, a equacao da altura de onda (que

sera medida pelos sensores ultrassonicos) é dada por:

x(t) = A(t).sin(wt) (3.8)

Sendo x(t) a posi¢do da superficie da agua em relacdo ao nivel zero (agua
parada). Para simplificar a modelagem, é utilizada a hipdtese de que a amplitude
da onda varia muito lentamente em relacdo a fun¢do seno, de maneira que sua
variagdo pode ser desprezada. Tendo esta hipoOtese, para obter a equacdao do

movimento na forma diferencial, deriva-se a equacao 2.8 duas vezes, chegando a:
X = -wlx (3.9)
Trazendo a equagdo 3.9 para o tempo discreto, utilizando-se os termos de
primeira ordem da Série de Taylor e o método de diferenciacdo de diferencas

regressivas, tem-se:

Xy — Zxk_l + Xj_p
At

= -wlx,

= (1 + WzAtZ) X = Zxk_1 - Xk-2

14



1
“ Xk T TowiacZ (2xp-1 = Xp-2) (3.10)

A equacdo 3.10 mostra que o estado xj , que se deseja estimar, é definido a
partir de dois estados anteriores xj_4 e x;_,. Por fim, escrevendo esta equag¢do na

forma matricial, resulta:

xk 2 -1
( ) = |1+w2AtZ 1+w2At?
Xk—1 1 0

G + () (3.11)

A partir desta modelagem, sdo obtidas as matrizes A e B da representacao

no Espaco de Estados:

2 -1
A= l1+w2At2 1+w2Atzl e B=0.
1 0

E necessério agora encontrar o vetor H que relaciona o estado ao valor da

medida, considerando o ruido do sinal lido pelo sensor (vy).

Ze= (1 0) (x’;’;) + v, (3.12)

Logo,
H=(1 0)

3.4.2. Modelo de onda irregular
Neste capitulo, é apresentado o modelo matematico que descreve o
movimento do menisco da onda irregular. O modelo de onda utilizado no
desenvolvimento deste trabalho é baseado em uma aproximacao linear de segunda
ordem sugerida por Salid, Jenssen e Balchen [5], a qual pode ser escrita da

seguinte forma:

15



Kw S

h(S) = m (313)
onde Ky representa o ganho e é dado por:
K, =2 wy o0, (3.14)

onde , por sua vez, representa o coeficiente de amortecimento; wg a frequéncia

nominal e a,, a constante que descreve a intensidade da onda.

Esses parametros sao dimensionados de tal forma a se obter um espectro
de frequéncia aproximado que possua uma distribuicdo de energia compativel com

a do espectro de frequéncia PM, desenvolvido por Pierson e Moskowitz em 1963

[5].

Dado o modelo que rege o movimento da onda e seus parametros,
encontrados a partir da aproximacao do espectro de frequéncia, pode-se escrever a

equacdo da altura de onda na forma diferencial:

J() + 23 wo y() + wiy(t) = Ky, w(t) (3.15)

onde y(t) é a posicdo da superficie da 4gua em relagdo ao nivel zero (dgua parada)

e o0 w(t) o ruido Gaussiano ja mencionado anteriormente.
Agora, trazendo a equacao 3.15 para o tempo discreto, tem-se:

Vi = 2Yk-1+ Yr—2 Yk = Yk-1 2
T =-20wo =+t Wy Yk

242 ((L)O At 1
T+ wZ 2242 { g At VK1 7 11 w2 At242 ¢ wo At

- Yk = Vik—2 (3.16)

A equacdo 3.4 mostra que o estado y, que se deseja estimar é definido a

partir de dois estados anteriores y,_1 € Yx_2-

16



Por fim, escrevendo esta equacdo na forma matricial (Espaco de Estados),

resulta:

Yk 242§ g At 1 Vk-1 Wy
— 2 A$2 2 A$2 -
( k—1) = l1+w0At ;Z(woAt 1+w3 At SZZwOAtl (yk—z) + ( 2) (3.17)

A partir desta modelagem, sdo obtidas as matrizes A e B da representacao

no Espaco de Estados do Filtro de Kalman:

242 ¢ wo At -1
A= |1+w3 At2+2 { wo At 1+w3 At2+2 { wo At e B=0.
1 0

E necessario agora encontrar o vetor H do Filtro, que relaciona o estado ao

valor da medida, considerando o ruido do sinal lido pelo sensor (v},).
1) + v, (3.18)

Logo,
H=(1 0)

3.5. Calculo da absor¢ao de ondas

Antes de enunciar a férmula para calculo da absor¢do, é importante
entender a nomenclatura adotada por Schiffer [6] para as ondas. A figura 3.4 a

seguir mostra as dire¢des das ondas incidente, refletida e re-refletida:

17
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Refietida
Re-refletida —» Ngag

Figura 3.4 - Nomenclatura de ondas

Ou seja, é tomado como ponto de referéncia o modelo que estd sendo

ensaiado: onda incidente no modelo, refletida do modelo e re-refletida para o
modelo. Para o calculo da absor¢do, Schaffer [6] propde a utilizacdo da seguinte

expressao para calculo do coeficiente de re-reflexao:
RR = 274 (3.19)
Ar—A;

onde:
= A;:amplitude da onda incidente desejada teoricamente

= A;:amplitude da onda incidente obtida na pratica

» A, :amplitude da onda refletida obtida na pratica

No caso em que ha apenas absorc¢io de ondas, 4; = 0. 4; é diferente de zero,
pois, como a fung¢do de transferéncia do controlador é obtida numericamente, a
absorcao de ondas, na pratica, nao é perfeita (embora teoricamente seria possivel

absorver 100% das ondas). A, é obtido pelas leituras dos sensores de altura de

agua no tanque.
Na figura abaixo é mostrada a fun¢ao de transferéncia do controlador.

—w{0)

out

0.003519+0.01857z 1+0.03981-20. 042122
1-0.8861= 140 5053220 59532

Disorete Filter2

in
Figura 3.5 - Funcio de transferéncia do controlador de absorcéo, no Simulink




4, IMPLEMENTACAO

Para testar o algoritmo do Filtro de Kalman, foram elaborados programas,
utilizando o software MATLAB, para fazer o pds-processamento de sinais
adquirido pelos sensores em outubro de 2009. A captura do sinal é feita utilizando

um arquivo *mat que contém os dados dos ensaios realizados anteriormente.

Além da codificagdo padrdo do Filtro, uma nova estratégia foi incluida no
algoritmo, como tentativa de se obter um filtro adaptativo. Embora o Filtro de
Kalman tenha sido elaborado para absorver ruidos aleatdérios com distribuicdo
probabilistica normal, os sinais ruidosos do tanque de provas tendem a seguir um
padrdo. Desta maneira, em alguns momentos a medicdo é boa, e em outros a
medicdo apresenta ruido. Assim, a ideia proposta é avaliar a Inovacao (diferenca
entre a estimativa inicial do Filtro e o sinal medido); sendo esta diferenga maior
que um determinado valor, o sensor é considerado ruidoso demais, e a estimativa
final é avaliada dando maior peso ao modelo que a medicao. De maneira inversa, se
a diferenca for menor que o valor estipulado, a estimativa final tem maior

influéncia da medigao.

Os estudos preliminares do funcionamento do filtro, tanto para ondas
regulares como irregulares, foram conduzidos de maneira offline. Uma vez
verificada a viabilidade da utilizacdo do Filtro e sua efetividade, foram
desenvolvidos os programas para execucdao online do Filtro de Kalman. Nesta
segunda fase, os programas implementam blocos que sao incorporados a malha de
controle do tanque de provas, que utiliza a ferramenta Simulink, do MATLAB, para

sua operacao.
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4.1. Implementacao para ondas regulares
4.1.1. Implementacao offline

No ensaio analisado, os flaps de uma parede do tanque estio gerando
ondas a 1 Hz e as outras trés paredes estdo fixas. A parede oposta a geradora

recebe as ondas e realiza a medicdo das alturas de onda.

A seguir é apresentada uma plotagem de um sinal ruidoso adquirido pelo

sensor de ultrassom de um flap, que sera objeto desta analise:

onda medida
! T I T | T I T _
BOE : L PP RPEE R TR T T SR lateral -1
5 : ' : : : 5 : lateral +1
P T S o S AR onda filrada
f : f : : : onda estimada
Nk .............. ......... ......... ......... ........ . ......... _
QD_...,E ........... ........ ......... .......... ....... N || D ....... ......... ]
£ .l DU N T
£ 1|:|_...:. ....... b SRR R SRREERRERE SRR Al e Al
- : : : : : : : :
E |:| ........................................................................................ -
I
Aok FV R i
B 1| T TR NI RUUUTN EIUUTOTRPEIRIYY I POERTRHETRPRURIRRRTS T PRI -
A0 ............................................... ...........
A0 R LA A SN
| | 1

! i 1 i 1 i 1
124 1286 12.8 13 132 134 138 13.9 14 14.2
Tempo (=)

Figura 4.1 - Sinal originalmente adquirido pelo sensor de ultrassom

Percebe-se que o ruido é mais acentuado na subida da onda, e diversos
pontos da medi¢do sdo perdidos por conta deste problema. Para visualizar melhor
o sinal perdido, pode-se observar a figura 4.2, a seguir que mostra os sinais dos
sensores adjacentes ao analisado. Como a onda é perpendicular a parede que esta

fazendo as medic¢des, a altura de onda é a mesma para todos os flaps desta parede.
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onda medida

— — —lateral -1
lateral +1
onda filtrada
onda estimada

Altura (rmrm)

I i i 1 i 1
124 126 128 13 132 134 13k 13.9 14 142
Tempa (=)

Figura 4.2 - Sinal medido do flap de interesse comparado com sinais dos flaps adjacentes

Nota-se que sensor lateral-1 também apresenta medi¢ao ruidosa, porém o
lateral+1 possui um sinal de boa qualidade. Fica evidente a perda de amplitude do

sinal medido no flap de interesse.

Até entdo, era utilizado um filtro passa baixas (do tipo Butterworth de
segunda ordem, frequéncia de corte de aproximadamente 8 Hz) para tentar

condicionar o sinal antes de sua entrada no algoritmo de absorcao de ondas.

O sinal filtrado pelo filtro Butterworth é mostrado a seguir, na figura 4.3.
Nesta plotagem, pode-se observar que o sinal filtrado apresenta um atraso
bastante significativo em relagdo ao original, da ordem de 30 ms, que é
aproximadamente 3 vezes o periodo de amostragem (12 ms). Observando também
a onda medida no flap adjacente, nota-se a perda de informacdo da amplitude da
onda nos picos, igualmente significativa. No caso do primeiro pico mostrado,
ocorre uma perda na amplitude de até 25 mm, sendo que a onda tem amplitude de

aproximadamente 80 mm.
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onda medida
lateral -1
lateral +1

— ——onda filtrada
onda estimada

Altura (rmrm)

] i ] i ]
12.8 13 13.2 13.4 136 138

Tempa (=)

] i
12.4 126

Figura 4.3 - Sinais medidos e sinal do filtro passa baixas

Com a utilizagao do Filtro de Kalman, ja foi possivel melhorar bastante o
resultado da medida. Diminuiu-se o atraso entre a medi¢do e a estimativa para
valores da ordem de 10 ms, e a perda de amplitude foi diminuida no minimo pela

metade, nas cristas da onda.

Para atingir esses resultados, apds a obtencdao do modelo matematico e
desenvolvimento do algoritmo do Filtro de Kalman, realizou-se uma bateria de
testes desse algoritmo para possibilitar o ajuste dos parametros Q e R, que, como
abordado anteriormente, representam a incerteza do modelo e ruido da medida,

respectivamente.

Os valores adotados para tais parametros sao modificados ao decorrer da
estimativa, de acordo com o resultado absoluto obtido pelo calculo da inovagao, a
qual é obtida pela diferenca entre o valor amostrado e o valor da medida estimado
pelo Filtro de Kalman. Caso a inovacdo esteja dentro da faixa limite, também
ajustada através de testes, a medida é considerada satisfatoria e entdo € definido o

valor Rpaixa para a covariancia do erro de medida e Qaita para a covariancia do erro
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de modelagem. J&4 no caso em que a inovagdo excede a faixa limite, assume-se Raita

e Qpaixa- O modelo de andlise aqui descrito permite que o algoritmo do Filtro de

Kalman apresente um carater adaptativo.
Os valores utilizados no algoritmo desse trabalho encontram-se na tabela

a seguir:

Tabela 4.1 - Parametros ajustados para o algoritmo do Filtro de Kalman
Ralta Qbaixa Qalta
5 50

Rbaixa
50 5000

As figuras a seguir mostram uma comparag¢do entre a medicdo, a onda

filtrada até entdo, e o resultado a que se pode chegar com a implementacdo do

Filtro de Kalman:

onda medida

! ' ' lateral -1
lateral +1

— —=—onda filtrada

onda estimada

Altura (rnrm)

1 i 1 1
134 136 13.9 14 14.2
Termpa (s)

I i 1
12.4 126 128 13 13.2

Figura 4.4 - Comparacio entre sinal medido, sinal do filtro passa baixas

e estimativa obtida pelo Filtro de Kalman
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onda medida
lateral -1
lateral +1

— ——onda filtrada
onda estimada

i ........... ........... ......... 5 ........... .......... N

k- .......... ......... .. .......... ...........

Ak ........... ...... } . . .......... ........... .........

Altura (rmrm)

i i 1 i 1 i
13.3 13.4 13.5 136 13.7 138 13.9 14 14.1 14.2
Tempa (=)

Figura 4.5 - Detalhe da comparacao entre sinal medido, sinal do filtro passa baixas

e estimativa obtida pelo Filtro de Kalman

4.1.2. Implementacao online

A implementacdo online baseou-se no programa desenvolvido
anteriormente (para a aplicacdo offline), com algumas alteracdes para possibilitar

seu funcionamento como bloco no Simulink. A malha completa de controle do

tanque de provas é mostrada na figura 4.5, abaixo:

Calibradar
Hidradinamico |+

=" Filro de Kalman =z Y Ul

Figura 4.5 - Malha de controle do Calibrador Hidrodinamico - Simulink
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Além das alteracdes no software necessarias para a criacdo do bloco,
destacado na figura anterior em vermelho, a diferenca mais marcante do novo
programa é que ele foi elaborado para poder fazer as operagdes matematicas
simultaneamente para mais de um flap. Isso foi realizado trabalhando-se com
operacgOes matriciais. Em vez de se utilizar um loop e fazer os calculos para cada
um dos flaps (o que tem tempo de processamento muito elevado), monta-se as
matrizes do algoritmo contendo sub-matrizes correspondentes a cada um dos flaps
utilizados, localizadas na diagonal das matrizes. As outras posicoes da matriz sdo

preenchidas com zeros. Por exemplo, para a matriz de estados, A, o resultado fica:

[ 2 1 0 0 0 0
1+ V;ZAL“2 1+ v(v)zAt2 0 0 0 0
0 0 2 1
A= 0 0 1+w2At?2 1+ w2At?
1 0
0 0 2 1
0 0 (1 +w2At2 1+ WZAt2>
1 0 |
Ja a matriz H fica:
10 00 0 0
Y= o:o (1:0) 0:0
00 0 O - (1 0

A criacdo destas matrizes, bem como o algoritmo utilizado no Filtro de

Kalman, podem ser verificados em mais detalhes na sec¢do 8.

4.2. Implementacao para ondas irregulares

A implementacao offline para ondas irregulares segue os mesmo conceitos
utilizados no caso das ondas regulares. O mesmo algoritmo do Filtro de Kalman,
utilizado anteriormente neste trabalho, também pode ser aplicado para este caso

com ondas irregulares, necessitando apenas a alteracdo das matrizes do modelo.
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4.2.1. Implementacao offline

A seguir, na figura 4.6, é apresentada a plotagem de uma onda irregular,

tirada de uma média dos sensores de uma parede do CH-TPN.

Altura

ook ............ e ' ........... ........................ ........... _
MO0k ........... ........ N T 4
: : F ' r ' :

1000 ! ik

0 I
-1000
1] T SRS ........ hIE ST TRY R ........... i
000 e ............ ..... ......... ............ ........... ........... i
4000 i ] ! i ] i I

0 1000 2000 3000 4000 5000 G000 7000 B0o0

Tempo (amostras)

Figura 4.6 - Onda irregular avaliada pela média dos sensores de uma parede do CH-TPN

Com base neste sinal de onda, e utilizando os seguintes valores para os

parametros do modelo descrito na se¢do 3.4.2, é possivel gerar os espectros de

frequéncia de onda apresentados na figura 4.7, em seguida.

=006
wqg = 0.6
o, = 4845
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Espectro da onda irregular

4000 T T T T T T T T
: : Onda real
4500k - RPN RIS - AR O PP L — — — Sistema tedrico H
4000 ......... ] R T S SO SO PR PRS- UREUPREE SRR
e00 - ...... ......... ......... N SR
= : : ) : : : : :
E F000 b | | T A S S SR 4
o
@
3
o 2500
=
© : : : : :
= . : : . : : :
2 2000 e [ERPRRY FEEARRTS. TEN R RS HEERRECREE R EEE P SRR S B
o : : : : :
o : : : : : : :
18005 SR [ENITN T T T R ERRPERS T

SO0} o] N e s foonees 4

e
T e ——

Figura 4.7 - Espectro de frequéncia para a onda irregular

Cabe frisar que a obtencdo dos parametros é conduzida de forma empirica,
sendo ajustados sucessivamente até que a curva seja compativel com o espectro
calculado para a onda medida. Este processo busca a validacao dos parametros
calibrados a serem utilizados pelo modelo matematico. Feito isso, pode-se partir

para a utilizacao do Filtro de Kalman.

A figura a seguir mostra uma comparacao entre a medi¢ao, a onda filtrada
atualmente, e o resultado que se pode chegar com a implementacdo do Filtro de

Kalman:

B0 ! ! ! ! ! ;
A0 ............. ............. .......

20

Altura {rmim)
o

-20

-40

onda medida

— — —onda estimada

.50 i 1 | | I i
4600 4650 5700 5750 55800 5850 5900 4950
Tempo (amostras)

Figura 4.8 - Detalhe da comparacio entre sinal medido e estimativa obtida pelo Filtro de Kalman
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Assim como no caso de ondas regulares, visto anteriormente, com a
utilizacdo do Filtro de Kalman é possivel melhorar o resultado da medida,
reduzindo os ruidos de medida e diminuindo o atraso do sinal quando comparado

a outros tipos de filtro.

Para atingir estes resultados, apos a obtencdo do modelo matematico e
desenvolvimento do algoritmo do Filtro de Kalman, realizou-se novamente o ajuste
dos parametros Q e R do Filtro, que, como abordado anteriormente, representam a

incerteza do modelo e ruido da medida, respectivamente.

Os valores utilizados no algoritmo desse trabalho encontram-se na tabela a

seguir:

Tabela 2 - Parametros ajustados para o algoritmo do Filtro

de Kalman utilizado em ondas irregulares

Rbaixo Rbaixo Qbaixo Qalto

500 | 50000 5 50

4.2.2. Implementacao online

A implementacao online do Filtro para ondas irregulares seguiu a mesma
sequéncia adotada para ondas regulares (secao 4.1.2). Os resultados desta

implementacdo estdo apresentados no capitulo 5.

4.3. Problemas encontrados nas implementacoes online

Durante a implementacao online percebeu-se que o tempo de execuc¢do do
algoritmo do Filtro de Kalman é relativamente grande, e aumenta com o nimero
de flaps utilizando o Filtro. Dependendo deste, podem ocorrer atrasos de

comunicacao entre o computador de controle e os CLPs.

Apés a primeira versao do programa para execuc¢do de absorc¢do online para

ondas regulares, era somente possivel trabalhar com cerca de 10 flaps
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simultaneamente. Como o programa ja estava bastante enxuto, contendo apenas os
calculos essenciais para o funcionamento do filtro, foi necessario pensar em

alguma outra estratégia para atacar o problema.

Para melhorar o desempenho do programa do Filtro, foi adotada a ideia de
utilizar o processador da placa grafica do computador que controla os CLPs do
tanque, que tem suporte a tecnologia CUDA (disponivel nos processadores da
NVIDIA [8]). Desta forma, alguns calculos do Filtro sao realizados na placa de video
(GPU), que tem desempenho superior ao processador do computador (CPU) para
alguns tipos de calculos. Para possibilitar a utilizacdo do CUDA pelo MATLAB,
utilizou-se o software Jacket, fornecido pela AccelerEyes [9]. Todavia, nesta
topologia tem-se um tempo adicional que corresponde a transferéncia de dados

entre a CPU e a GPU, e vice versa.

Apébs testes, chegou-se a uma relagdio que minimizou o tempo de
processamento do Filtro de Kalman, enviando apenas alguns calculos matriciais
para a GPU. Com este avanco, foi possivel utilizar o Filtro para uma parede

completa (37 flaps simultaneamente).

Embora seja um avanco importante, para possibilitar a utilizacdo do Filtro
simultaneamente em todas as paredes do tanque suspeita-se que sdo necessarias
alteragdes em hardware (investimento num computador com maior capacidade de
processamento, mais rapido, ja que os CLPs do tanque ndo podem ser trocados tao
facilmente) ou utilizar o cluster do TPN, que possibilita paralelizar calculos e assim
reduzir o tempo de processamento. Apesar de estas opc¢des fugirem do escopo

deste trabalho, poderiam ser exploradas em trabalhos posteriores neste tema.

Outra solugdo que possibilitou a utilizacdo do Filtro para uma parede
completa foi a remocao do algoritmo de adaptatividade. Embora esta decisao tenha
diminuido a qualidade da filtragem (em comparag¢do com os estudos preliminares
onde este recurso estava presente), a economia em tempo de processamento foi
crucial. Também nao foi implementada de forma online a utilizagdo de mais de um

sensor por batedor, pelos mesmos motivos discutidos acima.
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5. AVALIACAO DA ABSORCAO

5.1. Analise qualitativa

Nesta andlise foram feitos ensaios de onda regular para 4 frequéncias

diferentes. Uma comparacdo do sinal de entrada e saida do Filtro de Kalman é feita

nas figuras 5.1 a 5.4, a seguir.

Flap 92 - Comparagdo entre sinais antes e depois do Filtro de Kalman (0.75 Hz)

Onda original

T : :
] = 2 = Gnda firada (FI)

Altura (mrm)

205
Tempo (s)

Figura 5.1 - Comparacao entre sinais antes e depois do Filtro de Kalman (0,75 Hz)

Flap 92 - Comparagdo entre sinais antes e depois do Filtro de Kalman (1.0 Hz)

25 1
: Onda original

20 ........ B . ..................... ......... ———Ondaﬂhrada(F}q

15 F R -

10

Altura (mrm)
—

5
ADF
151
25 i i
235 24 245 25 255
Tempo is)

Figura 5.2 - Comparacao entre sinais antes e depois do Filtro de Kalman (1,00 Hz)
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Flap 92 - Comparagéo entre sinais antes e depois do Filtro de Kalman (1.25 Hz)

Altura (rmrm)
—

A5 : ! Onda original
: : — — = Onda filtrada (FK)
a0 i I 1 i L i
2.4 326 328 I3 3.2 3.4 336 338
Tempo (=)

Figura 5.3 - Comparacio entre sinais antes e depois do Filtro de Kalman (1,25 Hz)

Flap 92 - Comparagéo entre sinais antes e depois do Filtro de Kalman (1.5 Hz)

: : : Onda ariginal
N ; : | === Onda filtrada (FK)

1 i i 1 i 1 i
36.4 366 3.8 7 rz2 374 I7E
Tempo (s)

Figura 5.4 - Comparacao entre sinais antes e depois do Filtro de Kalman (1,50 Hz)

Pelos graficos, percebe-se que conforme a frequéncia de onda gerada
aumenta, o atraso entre o sinal real e o estimado pelo Filtro também aumenta.
Além disso, conforme aumenta a frequéncia, o ruido na altura de onda também

aumenta, contribuindo ainda mais para a diminui¢do da qualidade do sinal.

Alem dos ensaios com ondas regulares, foi feito também um ensaio com

onda irregular, que é mostrado na figura 5.5.
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Flap 92 - Comparagio entre sinais antes e depois do Filtro de Kalman (onda irregular)
0 T ! T ' T ! T

Altura (rmirm)

—— Oinda original
Onda filtrada (FK)

_ 1 | L H
45 46.5 47 475 43 485 43 4325 50
Ternpo (=)

Figura 5.5 - Comparacao entre sinais antes e depois do Filtro de Kalman (onda irregular)

Semelhantemente ao resultado obtido para ondas regulares, tem-se um

pequeno atraso em relacdo ao sinal original, porém uma boa diminuicdo nos

ruidos.

5.2. Analise do coeficiente de re-reflexao

Apés a andlise qualitativa, é necessario se obter em niimeros o quanto de
melhoria a utilizacao do Filtro de Kalman pode proporcionar para o sistema. Com o
intuito de avaliar objetivamente a absorcao de ondas, utilizou-se o método

proposto por Schiffer [6], ja discutido na secdo 3.5.

Para ondas regulares, foram feitas duas andlises. Em cada uma, foram
realizados 4 ensaios, com ondas de frequéncias 0,75, 1,00, 1,25 e 1,50 Hz. A
primeira andlise considerou o mapeamento dos sensores até entdo utilizado no
tanque. Na segunda, este mapeamento foi removido e todos flaps estavam atuando
de acordo com as medi¢des de seus respectivos sensores. Os coeficientes de re-
reflexdo calculados sao evidenciados no grafico a seguir. Ressaltando que o
coeficiente de re-reflexdo corresponde a parcela das ondas que nao foram

absorvidas, o desejado é que estes valores sejam tdo baixos quanto possivel.
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Coeficiente de re-reflexdo (%)
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0.75 1 1.25 15
Frequéncia de onda (Hz)

Figura 5.6 - Coeficiente de re-reflexio em funcio da frequéncia para ondas regulares

Deste grafico resulta uma implicagdo muito importante para a aplicacao do
Filtro de Kalman neste trabalho. Como se pode observar, mesmo com a remoc¢ao do
mapeamento dos sensores, ou seja, mesmo utilizando sensores mais ruidosos, a
efetividade do Filtro de manteve praticamente constante. Portanto, o Filtro de
Kalman pode ser utilizado para absor¢cdo de ondas com direcdo diferente da
perpendicular a parede que esta absorvendo com vantagem sobre o filtro passa

baixas usado até entao.

Ja para ondas irregulares, foram feitos alguns ensaios com o filtro
Butterworth e com o Filtro de Kalman e levantadas as curvas do coeficiente de re-

reflexdo em funcao da frequéncia, na regido de operacao do CHTPN. Os resultados

sdo mostrados a seguir.
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100

| | —&—Filtro Butterworth
| | —+—Filtro de Kalman {Q=50; R=50000)

| —©—Filtra de Kalman (Q=50; R=100000)
—&—Filtro de Kalman (G=500; R=50000)

90

Coeficiente de re-reflexdo (%)

i
1.8 1.75

Fraguéncia de onda (Hz)

Figura 5.7 - Coeficiente de re-reflexdo em funcio da frequéncia para ondas irregulares

Pode-se perceber que o Filtro de Kalma

n apresenta melhora significativa

na absorcdo em algumas faixas de frequéncia, porém nao no espectro todo.

Ampliando o grafico numa regido mais utilizada

nos ensaios, ficam mais evidentes

os trechos em que o Filtro de Kalman supera o filtro passa baixas em desempenho.

30 T T T T T
—3¢—Filtro Butterwarth ' ' :
—+—Filtro de Kalman [Q=50; R=50000)

25 . E Fl“rD de Kalman (Q:SDI R:1DDDDD) .......................................................................
—&—Filtro de Kalman (G=500; R=50000)

B
[}

Coeficiente de re-reflexdo (%)

125
Fraguéncia de onda (Hz)

Figura 5.8 - Detalhe do coeficiente de re-reflexio em funcio da frequéncia para ondas irregulares

Constata-se entdo que a absorcao depende da escolha cautelosa dos

parametros do Filtro. Faz-se entdao necessaria

a realizacdo de uma andlise de
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sensibilidade para a escolha correta destes parametros, como sera visto na secdo

seguinte.

5.3. Sensibilidade dos parametros do Filtro de Kalman

Para se determinar a sensibilidade do Filtro de Kalman a variacdo nos
parametros Q e R, foram calculados os coeficientes de re-reflexao, em fun¢do da
frequéncia, para algumas combinag¢des deles. O resultado desta analise é melhor

representado no grafico mostrado a seguir.

0

—s¢— Q=5000; R=5
—+— (=50; R=500

| —+— @=50; R=5000 : .
1 TR A QSN0 R=SD | ................ ................
I Q=500; R=5000 : : : ;
—&— Q=50; R=50000
—E— @=50; R=100000
L —&— (2=500; R=50000 : o : _
Whe ................ .......... ; g ..' : e o

Coeficiente de re-reflexdo (%)

Frequéncia de onda (Hz)

Figura 5.9 - Coeficiente de re-reflexdo em funcio da frequéncia para ondas irregulares

para diversas combinac¢des de parametros do Filtro de Kalman

Apos a visualizagao dos resultados, fica claro que a melhor combinagao de
parametros para o Filtro de Kalman deve ser escolhida de acordo com o espectro
de ondas que sera gerado. Caso este filtro seja realmente incorporado ao sistema
de controle do tanque, seria possivel realizar uma bateria de ensaios para se obter
mais curvas do coeficiente de re-reflexdo e, posteriormente, criar uma base de
dados que selecione estes parametros automaticamente toda vez que as séries

temporais das ondas sao geradas no computador de controle.
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6. CONCLUSAO

A utilizacdo do Filtro de Kalman mostrou-se uma opc¢do bastante
interessante para solucionar o problema de ruido e distor¢ao dos sinais de altura
de onda. Entretanto, ainda ha desafios a serem vencidos no que diz respeito ao

tempo de execucao do algoritmo do Filtro dentro da malha de controle do CH-TPN.

A possibilidade de se utilizar a placa grafica do computador de controle
para realizacdo de alguns calculos mostrou-se uma opg¢do interessante para
diminuir o tempo de processamento do Filtro, porém suficiente apenas para

funcionamento de uma parede completa do tanque.

Mesmo com as restricdes de tempo de processamento apresentadas, os
resultados obtidos com a utilizacdo do Filtro de Kalman indicaram uma suavizagdo
satisfatdria dos ruidos. Obteve-se ainda a reducdo do atraso do sinal de altura de
onda, o que contribuiu consideravelmente com a melhoria, comprovada, das taxas
de absor¢io quando comparadas com as taxas do filtro Butterworth. E importante

lembrar que tal melhoria foi, desde o inicio, o principal objetivo deste trabalho.

A implementagdo do Filtro de Kalman destaca-se, também, por possibilitar
a remoc¢dao do mapeamento de sensores até entdo existente, o que permitira a

absorcao de ondas em todas as direc¢des.

Por fim, tendo em mente que problemas como velocidade de
processamento podem ser vencidos, por exemplo, com o avanc¢o da tecnologia ou
investimento em um computador mais rapido para execucdo do controle do
tanque, o Filtro de Kalman apresenta-se como uma interessante solucdo capaz de
melhorar as taxas de absor¢ao do CH-TPN a niveis compativeis com os de projeto
do mesmo, independentemente de ensaios que utilizem, simultaneamente, mais de

uma parede para absor¢do de ondas.

36



7. REFERENCIAS

[1] TPN - Calibrador Hidrodinamico. Disponivel em:
< http://www.tpn.usp.br/new/index.php/br/infra-estrutura/tanque >
Acesso em: 25/11/2010.

[2] KALMAN, R. E. - A New Approach to Linear Filtering and Prediction
Problems. Transactions of the ASME - Journal of Basic Engineering, Volume 82,

Series D, Pages 35-45. 1960.

[3] CADET, O. - Introduction to Kalman Filtering and its Use in Dynamic

Positioning Systems. Dynamic Positioning Conference. 2003.

[4] GREWAL, M. S.,, ANDREWS, A. P. - Kalman Filtering: Theory and Practice
Using MATLAB. 3rd Edition. Wiley. 2008.

[5] FOSSEN, T. I. - Guidance and Control of Ocean Vehicles. Wiley. 1994.

[6] SCHAFFER, H. A. - Active Wave Absorption in Flumes and 3D Basin. Proc.
Ocean Wave Measurement and Analysis. p. 1200-1208, 2001.

[7] CARNEIRO, M. L., MELLO, P. C,, LABATE, F. D., ARAUJO, A. A. M,, SIMOS, A. N,,
TANNURI, E. A. - USP Wave Basin: Active wave absorption and generation
algorithms - 4th [nternational Workshop on Applied Offshore Hydrodynamics, Rio
de Janeiro, Brazil. 2009.

[8] NVIDIA - CUDA Zone. Disponivel em:
< http://www.nvidia.com/object/cuda_home_new.html >

Acesso em: 27/11/2010

[9] AccelerEyes - MATLAB GPU Computing. Disponivel em:
< http://www.accelereyes.com/ >

Acesso em: 27/11/2010

37



ANEXO

Programa para teste preliminar offline de ondas

regulares

A seguir, é apresentado o programa, escrito em linguagem MATLAB, que
implementa o Filtro de Kalman para uma série temporal ja adquirida e
armazenada em arquivo *mat . Com este programa é possivel testar a efetividade

do Filtro de maneira offline.

% Algoritmo do Filtro de Kalman - MATLAB

%

function out = kalman_onda_real(canal, f, fa, onda, onda_f)
clc; % limpa o prompt de comando

% Declaracao de variaveis

f=1; % frequéncia da onda
omega = 2*¥pi*f; % frequéncia angular da onda

fa = fa; % frequéncia de amostragem

Ta = 1/fa; % periodo de amostragem

t = (1:(length(onda)))*Ta; % vetor de tempo

z1 = onda(:,canal); % sensor do flap de interesse
z2 = onda(:,canal-1); % sensores dos flaps adjacentes
z3 = onda(:,canal+l); %

% Declaragao das matrizes para o algoritmo do Filtro de Kalman

A = [2/(1+(omega*Ta)”2) -1/(1+(omega*Ta)~2); 1 0]; % (2x2)
H=1[10; 10; 10]; % (3x2)
Qbaixa = covariancia do ruido de processo

R X

5;
Qalta = 50; valores para covariancia baixa e alta ja pré-estabelecidos

Rbaixa = 500; % covariancia do ruido de mediada
Ralta = 5000; % valores para covariancia baixa e alta ja pré-estabelecidos

% Atribuicdo inicial de valores de covariancia
Q = [Qbaixa];

R = [Ralta 0 0 ; % matriz de covariancia do ruido de mediada
(%] Ralta 0 ; % 3x3
0 0 Ralta]; %

I = eye(2); % matriz identidade 2x2

% Condigado inicial para execu¢do do algoritmo:

38



[0; e];
[1000];

X
p

for k = 1:1ength(z1)

% Predicao
X_=A*X; % estimativa a priori
P_=A*P*A" +Q; % covariancia do erro (2x2)

% Correcao
Z = [z1(k); z2(k); z3(k)]1; % aquisicdo pelo sensor

% Algoritmo de correc¢ao adaptativa das covariancias de erro
% (experimental)

if k>=3
inovacao = Z - H * X_; % cdlculo da inovagdo (3x2)
for i=1:3 % varredura da diagonal da matriz R
j=0; % variavel auxiliar
if (abs(inovacao(i)) > 5) % caso a inovag¢ao supere 5 mm
R(i,i) = Ralta; % para cada sensor, o valor de R
j = j+1; % é considerado alto, e o numero de
else % sensores ruidosos é incrementado
R(i,i) = Rbaixa;
end

if(j>=2) % aqui é avaliado a possibilidade de 2 ou 3 sensores
Q = Qbaixa; % fornecerem sinais ruidosos; neste caso o ruido de
else % de processo é diminuido, dando maior peso a planta
Q = Qalta; % na estimativa

end

end
end
K=P_*H" / (H* P_*H + R); % ganho de Kalman
X=X_+K* (Z-H*X); % estimativa a posteriori
P= (I -K®*H)*P_; % covariancia do erro
x1(k) = X(1,1); % armazenamento das estimativas
K1(k) = K(1,1); % armazenamento dos ganhos de Kalman

end

% Plotagem do resultado das medi¢des e estimativas

t, onda_f(:,canal), ' k',... plotagem da onda filtrada;
t, x1, '-b"); 4 plotagem da estimativa
legend ('onda medida', 'lateral -1','lateral +1','onda filtrada', 'onda estimada');
title ('Filtro de Kalman');
xlabel ('Tempo (s)');
ylabel ('Amplitude (mm)');
grid;

figure(1);
plot (t, z1l, '-m',... % plotagem da onda medida;
t, onda(:,canal-1), ' r',... % plotagem das medidas de flaps
t, onda(:,canal+l), ' g',... % adjacentes;
%
%

% Fim do programa
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Programa para operac¢ao online via Simulink de ondas

regulares

Aqui, ap6s o cddigo de inicializagdo das matrizes para o algoritmo do Filtro
e outras constantes pertinentes, é apresentado o programa elaborado para a
incorporacao do Filtro ao sistema ja em utilizacdo no Calibrador Hidrodinamico.
Este cédigo é chamado pelo bloco do Simulink responsavel pela filtragem do sinal

de medicao de altura.

% Algoritmo de inicializacao
%

clear;

amp = 50; % Amplitude de onda (em mm)

f = .75; % Frequencia da onda (em Hz)

omega = 2 * pi * f; % Frequencia angular da onda

Ta = .012; % Periodo de amostragem (em s)
nflaps = 2; % Numero de flaps a serem filtrados

% Criacao da matriz A do Filtro de Kalman
for i=1:nflaps
A( 2*i-1:2%i , 2*i-1:2*i ) = [2/(1+(omega*Ta)~2) -1/(1+(omega*Ta)"2)
1 0];
end
A = sparse(A);

% Criacao da matriz H do Filtro de Kalman
for i=1:nflaps
H( i, 2*%i-1:2*%1 ) = [1 @];
end
H = sparse(H);

% Fung¢ao que cria as séries temporais para acionamento dos servo motores

[Posicao,WorkFreq,vel_us,T,b,a,benv,aenv] = ...
regular([1.625 4.1 1.21],0.012,20,2,2,f,(amp/1000),0);

% Fim do programa
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% Algoritmo do Filtro de Kalman - Simulink MATLAB
%
function FiltroKalman(block)

setup(block);
end

function setup(block) % Fun¢do de configuracdo de entradas e saidas

block.NumDialogPrms 6;
block.NumInputPorts 1;
block.NumOutputPorts = 1;
block.SetPreCompInpPortInfoToDynamic;
block.SetPreCompOutPortInfoToDynamic;
block.InputPort(1l).DirectFeedthrough = false;
block.InputPort(1).Dimensions = 148;
block.OutputPort(1l).Dimensions = 148;
block.SampleTimes = [-1 O];
block.SimStateCompliance = 'DefaultSimState’;
block.RegBlockMethod('PostPropagationSetup', @DoPostPropSetup);
block.RegBlockMethod('InitializeConditions', @InitConditions);
block.RegBlockMethod('Outputs’, @0utput);

end

function DoPostPropSetup(block) % Func¢do de configuracdo da meméria interna
% (para armazenar informa¢des para a préxima iteragdo)
nflaps = block.DialogPrm(1).Data;

block.Numbworks = 2;
block.Dwork(1) .Name = 'X'";
block.Dwork(1).Dimensions = 2*nflaps;
block.Dwork(1).DatatypeID = 0;
block.Dwork(1).Complexity = 'Real’;
block.Dwork(1l).UsedAsDiscState = true;
block.Dwork(2).Name = 'P';
block.Dwork(2).Dimensions = 4*nflaps”2;
block.Dwork(2).DatatypeID = 0;
block.Dwork(2).Complexity = 'Real’;
block.Dwork(2).UsedAsDiscState = true;

end

function InitConditions(block) % Funcdo de inicializacdo

% Varidveis globais
global nflaps A H Qref Rref InovAlta I Q R K X_ X P P_ inovacao Z Xsaida UMSQ UMSR;

% Inicializacao

nflaps = block.DialogPrm(1).Data;
A = block.DialogPrm(2).Data;
H = block.DialogPrm(3).Data;
Qref = block.DialogPrm(4).Data;
Rref = block.DialogPrm(5).Data;
InovAlta = block.DialogPrm(6).Data;

I = eye(2*nflaps); % matriz identidade (2n x 2n)
UMSQ = ones(2*nflaps); % matriz identidade (2n x 2n)
UMSR = ones(nflaps); % matriz identidade (2n x 2n)
Q = eye(2*nflaps) * Qref(2); % [Qbaixa Qalta]
R = eye(nflaps) * Rref(1); % [Rbaixa Ralta]

block.Dwork(1l).Data
block.Dwork(2).Data
end

zeros(1,2*nflaps);
zeros(1,4*nflaps~2)+1000;

R X
T X
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function Output(block) % Fung¢do principal do Filtro de Kalman

% Varidveis globais
global nflaps A H Qref Rref InovAlta I Q R K X_ X P P_ inovacao Z Xsaida UMSQ UMSR;

Z = block.InputPort(1).Data(l:nflaps); % o bloco adquire todos os sinais

% de um determinado passo ao mesmo

% tempo
X = block.Dwork(1l).Data; % X = [ [x"(k-1); x~(k-2)]flapl; [x~(k-1); x~(k-2)]flap2;...];
P = reshape(block.Dwork(2).Data, 2*nflaps, 2*nflaps); % Matriz de covariancia P

% Predicao
X =A*X; % estimativa a priori
inovacao = Z - H * X_;

% Algoritmo de adaptatividade (EXPERIMENTAL)

first = find(inovacao>InovAlta)* 2 -1;

second = find(inovacao>InovAlta)* 2;

V = union(first,second);

W second/2;

Q = (Q.*(UMSQ-sparse(V,V,1,2*nflaps,2*nflaps))) + ...
sparse(V,V,Qref(1),2*nflaps,2*nflaps);
(R.*(UMSR-sparse(W,W,1,nflaps,nflaps))) + ...
sparse(W,W,Rref(2),nflaps,nflaps);

R

NS

P_=A*P*A" +Q; 4 covariancia do erro

% Correcao

K=P_*H" / (H*P_*H +R); % ganho de Kalman

X = X_ + K * (inovacao); % estimativa a posteriori
P=(I -K®*H)*P_; % covariancia do erro

block.Dwork(2).Data = reshape(P,1,[]);

% Saida de dados

Xsaida = reshape(X,2,[1]);

Xsaida(nflaps, (nflaps+1):148) = zeros(1,(148 - nflaps));
block.OutputPort(1l).Data = Xsaida(1,:);

% Armazenamento dos vetores para o proximo passo
block.Dwork(l).Data = X;

end

% Fim do programa
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Programa para teste preliminar offline de ondas

irregulares

A seguir, é apresentado o programa, escrito em linguagem MATLAB, que

implementa o Filtro de Kalman para uma série temporal ja adquirida e

armazenada em arquivo *mat . Com este programa é possivel testar a efetividade

do Filtro de maneira offline para ondas irregulares.

% Algoritmo do Filtro de Kalman para onda irregular

function kalman_offline_irregular_TPN(onda, w0, zeta, t)

clc; % limpa o prompt de comando
figure(1);

plot(t, onda);

legend('Onda medida');

flap = 31;
T = .012;
z = onda(:,flap); % sensor do flap de

% Declaracdo das matrizes para o algoritmo do

>
1]

10];

H

[1e];

Qbaixa = 5;
Qalta = 50;
Rbaixa = 500;
Ralta = 50000;

InovAlta = 50;

I = eye(2); % matriz identidade 2x2
Q = Qalta;
R = Rbaixa;

% Q = 5;
% R = 500;

% Condigdo inicial para execu¢do do algoritmo:

X = [0; o];
P = 1000;
for k = 1:1ength(z)

% Predicao
X_ = A *X;
P_=A*P*A" +Q;

interesse

Filtro de Kalman

[(2+2*zeta*wO*T) /(1 + wON2*TA2 + 2*zeta*wl*T) -1/(1 + wl 2*T/A2 + 2*zeta*wo*T)

% covariancia do ruido de processo
% valores para covariancia baixa e alta ja pré-estabelecidos

% covariancia do ruido de mediada
% valores para covariancia baixa e alta ja pré-estabelecidos

% estimativa a priori
% covariancia do erro (2x2)
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% Correcao
Z = z(k); % aquisicdo pelo sensor

inov(k) = Z - H * X_;

if (k > 1)
if (abs(inov(k)) > InovAlta)
R = Ralta;
Q = Qbaixa;
disp(k)
else
R = Rbaixa;
Q = Qalta;
end
end
K=P_*H" / (H*P_*H +R); % ganho de Kalman
X = X_+ K * (inov(k)); % estimativa a posteriori
P=(I-K*H)*P_; % covariancia do erro
x1(k) = X(1,1); % armazenamento das estimativas
end

% Plotagem do resultado das medigdes e estimativas

figure(2);
plot ( t, onda(:,flap),... % plotagem da onda medida;
t, x1); % plotagem da estimativa

legend ('onda medida',...
‘onda estimada');
title (['Filtro de Kalman para onda irregular; Flap: ', num2str(flap+75)]);
xlabel ('Tempo (amostras)');
ylabel ('Amplitude');
grid;

% Fim do programa
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Programa para operac¢ao online via Simulink de ondas

irregulares

Aqui, ap6s o cddigo de inicializagdo das matrizes para o algoritmo do Filtro

e outras constantes pertinentes, é apresentado o programa elaborado para a

incorporacao do Filtro ao sistema ja em utilizacdo no Calibrador Hidrodinamico.

Este cédigo é chamado pelo bloco do Simulink responsavel pela filtragem do sinal

de medicao de altura.

% Filtro de Kalman para Onda Irregular - programa de inicializac¢ao

% Carregar ensaio:
clear all;

[Posicao,WorkFreq,vel _us,T,b,a,benv,aenv]=...
longcrested([1.625 4.1 1.21],0.012,2%60,2,2,
'Jonswapl',1.66,0.092,1.611,180,5,0.5,1);

onda = Posicao.signals.values(:,1); % carrega onda
t = length(onda); % vetor de tempo

% Plotagem da onda medida
figure(1);

plot(t, onda);

grid;

% Espectro da onda medida (Power, omega)
[P,w] = pwelch(onda);

% Parametros da funcao de transferéncia tedrica do sistema

zeta = 0.05;

wo = 0.205;

sw = 40;

Kw = 2 * zeta * wo * sw;

h = tf([Kw 0], [1 2*zeta*wd wo"2]);

% Calculo do espectro do sistema
[mag fase wh] = bode(h); grid;

Ph = zeros(length(mag));
for i=1:length(mag)

Ph(i) = mag(1,1,1i);
end

% Plotagem dos espectros da onda medida e sistema tedrico
figure(4);
% semilogx(w, P, wh, Ph, 'r');
plot(w, P, wh, Ph(:,1), 'r'); grid;
x1lim([©.1 ©.5]);
legend('Onda medida', 'Sistema tedrico');
xlabel('\omega');
ylabel('PSD");
% Fim do

programa
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% Filtro de Kalman para Onda Irregular - bloco Simulink

function FiltroKalman_Irregular_jacket(block)
setup(block);
end

function setup(block)
block.NumDialogPrms = 4;

%% Register number of input and output ports
block.NumInputPorts 1;
block.NumOutputPorts 1;

%% Setup functional port properties to dynamically
block.SetPreCompInpPortInfoToDynamic;
block.SetPreCompOutPortInfoToDynamic;

block.InputPort(1).DirectFeedthrough = false;
block.InputPort(1l).Dimensions = 148;

block.OutputPort(1).Dimensions = 148;
%% Set block sample time to inherited
block.SampleTimes = [-1 0];

%% Set the block simStateComliance to default (i.e., same as a built-in block)
block.SimStateCompliance = 'DefaultSimState’;

%% Register methods
block.RegBlockMethod('PostPropagationSetup', @DoPostPropSetup);
block.RegBlockMethod('InitializeConditions', @InitConditions);
block.RegBlockMethod( 'Outputs’, @Output);

end

function DoPostPropSetup(block)
%% Setup Dwork
nflaps = block.DialogPrm(1).Data(2);

block.NumbDworks = 2;
block.Dwork(1) .Name = 'X";
block.Dwork(1).Dimensions = 2*nflaps;
block.Dwork(1).DatatypeID = 0;
block.Dwork(1).Complexity = 'Real’;

block.Dwork(1l).UsedAsDiscState = true;

block.Dwork(2).Name = 'P';
block.Dwork(2).Dimensions = 4*nflaps”2;
block.Dwork(2).DatatypeID = 0;
block.Dwork(2).Complexity = 'Real’;
block.Dwork(2).UsedAsDiscState = true;

end

function InitConditions(block)
global iflap nflaps A H Qref Rref InovAlta I Qst Rst UMSQ UMSR;
%% Initialize Dwork

iflap = block.DialogPrm(1).Data(1);
nflaps = block.DialogPrm(1).Data(2);
A = block.DialogPrm(2).Data;
H = block.DialogPrm(3).Data;
Qref = block.DialogPrm(4).Data(1:2);
Rref = block.DialogPrm(4).Data(3:4);
InovAlta = block.DialogPrm(4).Data(5);



end

I

eye(2*nflaps); % matriz identidade (2n x 2n)

UMSQ = eye(2*nflaps); % matriz identidade (2n x 2n)
UMSR = eye(nflaps); % matriz identidade (2n x 2n)

Qst
Rst

block.Dwork(1).Data
block.Dwork(2).Data

= eye(2*nflaps) * Qref(2); % [Qbaixa Qalta]
= eye(nflaps) * Rref(1l); % [Rbaixa Ralta]

zeros(1,2*nflaps);
zeros(1,4*nflaps”~2)+1000;

3R 3R
T X

function Output(block)
%% Filtro de Kalman
global iflap nflaps A H Qref Rref InovAlta I Qst Rst K X_ X P P_ inovacao Z

Xsaida UMSQ UMSR;
Z = (block.InputPort(1).Data(iflap:(iflap + nflaps - 1))); % o bloco adquire
% todos os sinais
% de um determinado passo ao mesmo
% tempo
% X = [ [x*(k-1); x~(k-2)]flapl ; [x~(k-1); x~(k-2)]flap2; ... ];
X = (block.Dwork(1l).Data);

end

% Matriz de covariancia P (uma matriz para cada flap)
P = (reshape(block.Dwork(2).Data, 2*nflaps, 2*nflaps));

% Predicao
X_=A*X; % estimativa a priori

inovacao = (Z - H * X);

% Algoritmo de adaptatividade (EXPERIMENTAL)
first = find(inovacao >InovAlta)* 2 -1;
second = find(inovacao >InovAlta)* 2;

V = union(first,second);
W = second/2;

Q = ((Qst.*(UMSQ-sparse(V,V,1,2*nflaps,2*nflaps))) + .
sparse(V,V,Qref(1),2*nflaps,2*nflaps));

R = ((Rst.*(UMSR-sparse(W,W,1,nflaps,nflaps))) + ...
sparse(W,W,Rref(2),nflaps,nflaps));

P_ = gsingle(A * P * A" + Q); % covariancia do erro

% Correcao

K = double(P_ * H') / double(H * P_ * H' + R); % ganho de Kalman
X = (X_ + K * (inovacao)); % estimativa a posteriori
P = double((I - K * H) * P_); % covariancia do erro

block.Dwork(2).Data = reshape(P,1,[]);

% Saida de dados

Xsaida = zeros(2,148);

Xsaida(:,iflap:(iflap + nflaps - 1)) = reshape(X,2,[]);
block.OutputPort(1l).Data = Xsaida(1,:);

% Armazenamento dos vetores para o préximo passo
block.Dwork(1).Data = X;

% Fim do programa
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