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1. INTRODUÇÃO 

 

O projeto aqui apresentado propõe a utilização do Filtro de Kalman para 

condicionamento de sinais adquiridos por sensores ultrassônicos presentes no 

novo tanque de provas físico do TPN (Tanque de Provas Numérico), denominado 

Calibrador Hidrodinâmico (CHTPN). Estes sensores são montados na parte frontal 

de cada um dos 148 batedores (flaps) do tanque, e são responsáveis pela medida 

da altura da onda incidente no batedor. Esta medida é diretamente utilizada no 

algoritmo de absorção ativa de ondas, que é o grande diferencial deste tanque de 

provas.  

 

Atualmente os sinais apresentam ruído e distorção, devido principalmente 

a problemas mecânicos como imperfeições na montagem dos sensores e nos 

dispositivos denominados “guias de onda”, que são canaletas com o intuito de 

melhorar as condições da superfície da água na região da medição, melhorando o 

sinal de ultrassom.  

 

Visando-se obter um sinal mais preciso da altura de onda em cada flap, é 

proposta a utilização do Filtro de Kalman, que é um filtro “inteligente”, pois leva 

em consideração a modelagem do sistema e faz previsões da medição, ponderando 

essas previsões com o valor adquirido de fato no sensor. Outra característica 

interessante deste tipo de filtro é que ele permite a chamada fusão sensorial, ou 

seja, a utilização de mais de um sensor para avaliar cada medida. 

 

Uma das primeiras aplicações notáveis deste filtro foi na estimativa de 

trajetória dos foguetes Apollo. Outras aplicações de destaque são para sistemas de 

navegação e posicionamento dos ônibus espaciais da NASA (Space Shuttle) e da 

Estação Espacial Internacional (ISS), além da larga utilização em sistemas de 

posicionamento dinâmico (DP) de navios e plataformas petrolíferas. 
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2. METODOLOGIA  

 

O trabalho é dividido, basicamente, em cinco etapas principais: 

 Estudo teórico 

 Implementação offline 

 Implementação online 

 Testes e coleta de dados 

 Documentação dos resultados 

 

A etapa do estudo teórico compreende, primeiramente, a definição do 

problema, que deve ser feita de maneira bastante objetiva, estabelecendo 

claramente as condições antes do início do trabalho, bem como os resultados a que 

se pretende chegar. Posteriormente são estudadas tanto a formulação do Filtro de 

Kalman como a modelagem do problema real, anteriormente definido. 

 

A implementação foi dividida em duas partes. A primeira, denominada 

offline, serve como avaliação da viabilidade de implantação do Filtro na prática. 

Nesta etapa, são utilizados sinais adquiridos de antemão em ensaios no tanque de 

provas, que servem de entrada para os programas de teste do Filtro. Uma vez 

verificados o funcionamento do Filtro e a melhoria no sinal de altura da onda, 

pode-se então partir para a implementação online no CH-TPN, que consiste, 

basicamente, em adaptar o programa desenvolvido na etapa offline de maneira que 

possa ser executado em tempo real, junto ao sistema de controle já existente no 

tanque (baseado na ferramenta Simulink do MATLAB).  

 

Após os desafios na implementação online, passa-se para testes do Filtro e 

coleta de dados para posterior análise e avaliação final do resultado da 

implementação, para que se tenha uma medida objetiva da efetividade do Filtro de 

Kalman nesta aplicação. 
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3. ESTUDO TEÓRICO  

 

3.1. Introdução do problema 

 

O Calibrador Hidrodinâmico (CHTPN) é um tanque quadrado, com 14 m de 

lado e cerca de 4 m de profundidade, que opera em frequências de ondas de 0,25 

até 3 Hz, e podendo gerar ondas de até 40 cm de altura [1]. 

 

 

Figura 3.1 – Imagem do Calibrador Hidrodinâmico do TPN 

 

A medição da altura de onda é realizada por sensores ultrassônicos 

instalados em cada um dos 152 flaps do tanque. Aqui, vale frisar que, embora haja 

152 flaps, apenas 148 são utilizados para geração e absorção de ondas, visto que 4 

deles são fixos (para impedir a colisão dos flaps dos cantos do tanque). A medição é 

feita valendo-se da técnica de pulso-eco, ou seja, o transdutor de ultrassom emite 

um pulso que se propaga na direção vertical para cima, pela guia de onda, e, ao 

chegar à superfície da água, retorna ao transdutor. Como a velocidade de 

propagação do pulso de ultrassom na água é conhecida, pelo tempo entre o envio 
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do pulso e seu retorno (eco), é possível calcular a altura de onda média neste 

período. A altura de onda, bem como todo algoritmo de controle do tanque, roda a 

um período de amostragem de 12 ms, ou seja, a uma taxa de aproximadamente 

83,33 Hz. 

 

O problema enfrentado atualmente é que, em alguns momentos, 

principalmente na crista das ondas (porção superior da ondulação), existem ecos 

espúrios que distorcem a medição da altura de ondas, como evidenciado na figura 

3.2, a seguir. Observa-se que, na subida da onda, ocorrem perdas na altura. 

 

 

Figura 3.2 – Sinal de altura de onda em sensor ruidoso 

 

Estes ruídos no sinal da altura de onda comprometem severamente a 

absorção de ondas, pois os flaps passam a vibrar e gerar outras ondas. A ideia, 

então, é utilizar o Filtro de Kalman para filtrar estas perdas de sinal e tentar obter 

um sinal menos ruidoso da altura de onda, e sem perdas de amplitude. 

 

Como medida paliativa, atualmente o CHTPN utiliza dois recursos para 

minimizar o efeito causado pelos sinais ruidosos.  
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Primeiramente, é utilizando um mapeamento dos sensores e flaps, ou seja, 

flaps com sensores muito ruidosos utilizam os sinais de sensores dos flaps 

adjacentes (foi estabelecido um máximo de 3 flaps com o mesmo sensor). Isso 

implica que os flaps se movem em blocos, o que reduz a eficiência da absorção de 

ondas com direção diferente da perpendicular à parede.  

 

A segunda estratégia, já para melhoria do sinal propriamente dito, é a 

utilização de um filtro passa baixas nos sinais de altura de onda. Este tem o 

inconveniente de atrasar o sinal significativamente, o que também compromete a 

absorção. 

 

Vale ressaltar que, neste trabalho, há dois tipos de ondas que serão 

estudadas e condicionadas: ondas regulares e irregulares. As ondas regulares são 

ondas que possuem frequência única durante todo o ensaio. Já as ondas irregulares 

são geradas baseadas num espectro determinado, contendo componentes em 

diversas frequências. 

 

Como metas estabelecidas no início do trabalho, acredita-se que, com a 

utilização do Filtro de Kalman, seja possível melhorar a absorção de ondas, que até 

então é de cerca de 80 a 90%, para valores entre 90 e 95%, que é o valor 

originalmente esperado para o CHTPN. Além disso, espera-se que o Filtro 

possibilite a absorção de ondas em todas as direções, isto é, deseja-se que seja 

possível remover o mapeamento anteriormente estabelecido e utilizar todos os 

sensores e flaps independentemente. 

 

3.2. Apresentação do Filtro de Kalman 

 

O Filtro de Kalman estima o estado de um processo em um determinado 

instante de tempo através da comparação de um modelo matemático com as 

medições efetuadas por sensores, ponderando entre os erros de modelagem e de 

medições, na busca de uma estimativa ótima. As equações utilizadas pelo Filtro 

podem ser divididas em dois grupos:  
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 equações responsáveis por projetar o estado atual, juntamente com o 

erro de predição, para o próximo instante de tempo, ainda sem o uso 

de medidas de sensores (estimativa a priori); 

 equações responsáveis por incorporar à predição feita anteriormente 

uma medição realizada, obtendo-se assim uma estimativa ótima 

(estimativa a posteriori).  

 

3.3. O Filtro de Kalman Discreto 

 

Neste capítulo, dois conceitos fundamentais para o trabalho são abordados 

de forma detalhada, de acordo com as referências [2], [3] e [4].  Estes conceitos 

são: a estrutura de predição e correção; e o ganho do Filtro de Kalman. 

 

3.3.1. Estrutura de Predição e Correção 

 

Nesta seção será apresentado como um Filtro de Kalman opera e 

verificada sua estrutura de predição e correção (Predictor-Corrector Structure). 

 

3.3.1.1. Predição  

 

Este é o primeiro passo realizado pelo Filtro de Kalman (Prediction Step). 

Nele, o estado atual é obtido através da predição baseada no estado anterior e no 

modelo do sistema. 

Um sistema dinâmico, modelado no Espaço de Estados, é descrito pela 

seguinte equação: 

 

                         (3.1) 

 

onde: 

 

    é o vetor de estado; o qual se deseja estimar; 
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  é a matriz de estado; que relaciona o estado de um determinado passo (k-1) ao 

estado do passo atual (k). Esta matriz descreve como o estado do sistema varia 

entre dois instantes consecutivos e é obtida a partir do modelo físico do sistema; 

  é a matriz de entrada; que relaciona o sinal de controle    com o estado    . Esta 

matriz também é obtida pelo modelo do sistema; 

   é o vetor de controle; 

   representa a incerteza do modelo. Na modelagem do Filtro de Kalman, é 

pressuposto que a incerteza é um sinal aleatório e tem aproximadamente uma 

distribuição Normal, de média nula e covariância Q: 

 

          ,   

 

onde Q representa a incerteza do modelo. 

 

Uma vez estimado o estado no passo k, obtém-se a amostra    neste 

mesmo passo, de acordo com o seguinte modelo: 

 

                                                                          (3.2) 

 

onde: 

 

  é a matriz que relaciona o estado à amostra. Ela descreve como a medida 

depende do estado; 

   representa o ruído de medida. Na modelagem do Filtro de Kalman, é 

pressuposto que o ruído de medida é aproximadamente um ruído branco 

Gaussiano de média nula e covariância R: 

 

          ,   

 

onde: R representa a incerteza da amostra. 

 

Baseando-se na equação 3.1, o Filtro de Kalman determina a primeira 

estimativa (a priori) utilizando a seguinte equação de predição:  
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                                                                      (3.3) 

 

onde: 

 

   
  é o estado estimado a priori no passo k a partir do conhecimento do estado no 

passo k-1; 

    é o estado estimado a posteriori no passo k a partir do conhecimento da 

amostra   . 

 

Ainda neste primeiro passo, o Filtro de Kalman calcula, através da seguinte 

equação, a incerteza na extrapolação para prever o estado seguinte (  
 ) [3].  

 

      
              (3.4) 

 

3.3.1.2. Correção 

 

No passo seguinte, o Filtro irá corrigir sua primeira estimativa, obtida no 

primeiro passo, baseando-se na medida recebida do sensor ultrassônico localizado 

no batedor. Para que essa correção seja feita, é preciso calcular o ganho de Kalman 

(  ), que será apresentado na próxima seção. O resultado deste segundo passo é 

uma nova estimativa do estado do sistema (a posteriori). Pode-se verificar, na 

equação 3.5, abaixo, que esta nova estimativa é na verdade o estado estimado a 

priori somado de um fator de correção proporcional a diferença entre a medida 

adquirida e a predição de qual seria essa medida. Isto indica porque o segundo 

passo é conhecido como o passo de correção. É importante também ressaltar que a 

diferença entre a medida e a estimativa da medida é chamada Inovação ou 

Resíduo:  

 

                                                       
              

   (3.5) 

 

Por fim, o erro P é atualizado de acordo com a seguinte equação [3]: 
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  (3.6) 

 

Monta-se, então, a estrutura do algoritmo do Filto de Kalman da seguinte 

maneira: 

 

Predição 

 

   
               

 

  
          

    

 

 

Correção 

     
          

          

 

       
              

   

 

              
  

 

 

Figura 3.3 - Estrutura de Predição e Correção do Filtro de Kalman 

 

3.3.2. Ganho do Filtro de Kalman 

    

O ganho do Filtro de Kalman tem como objetivo minimizar a incerteza da 

estimativa do estado. Ele trabalha levando em consideração as ponderações que 

são atribuídas ao valor medido e ao valor obtido pelo modelo, ou seja, se a 

incerteza da medida for muito grande e o modelo bastante confiável, deve-se dar 

uma importância maior ao valor obtido pelo modelo, o que fará com que o ganho 

do Filtro de Kalman seja pequeno, e isso resulta em uma menor tendência dos 

resultados filtrados seguirem o sinal amostrado. Já em um segundo caso, onde o 

modelo gera uma grande incerteza de seus resultados, mas a medida é mais 

confiável, dá-se maior peso ao valor obtido pelo sensor, fazendo com que o 

resultado filtrado tenha uma maior tendência de seguir o sinal amostrado. Para se 

calcular o ganho de Kalman é utilizada a seguinte fórmula: 

 

                
          

          (3.7) 

 

Estimativas Iniciais  
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3.4. Modelos Matemáticos 

 

Neste capítulo, é apresentado o modelo matemático adotado, que descreve 

o movimento do menisco da onda que incide sobre os batedores (flaps), nos quais 

os sensores ultrassônicos se localizam.   

 

3.4.1. Modelo de onda regular   

  

Para pequenas amplitudes e valores de número de onda (       ), como 

no caso do CHTPN, a equação que rege o movimento de uma onda regular na água 

pode ser simplificada por uma senóide. Então, a equação da altura de onda (que 

será medida pelos sensores ultrassônicos) é dada por: 

 

                        (3.8) 

 

Sendo      a posição da superfície da água em relação ao nível zero (água 

parada). Para simplificar a modelagem, é utilizada a hipótese de que a amplitude 

da onda varia muito lentamente em relação à função seno, de maneira que sua 

variação pode ser desprezada. Tendo esta hipótese, para obter a equação do 

movimento na forma diferencial, deriva-se a equação 2.8 duas vezes, chegando a: 

 

                 (3.9) 

 

Trazendo a equação 3.9 para o tempo discreto, utilizando-se os termos de 

primeira ordem da Série de Taylor e o método de diferenciação de diferenças 

regressivas, tem-se: 
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              (3.10) 

 

A equação 3.10 mostra que o estado    , que se deseja estimar, é definido a 

partir de dois estados anteriores      e     . Por fim, escrevendo esta equação na 

forma matricial, resulta: 

 

            
  

    
     

 

       

  

       

  
   

    

    
     

  

  
  (3.11) 

 

A partir desta modelagem, são obtidas as matrizes A e B da representação 

no Espaço de Estados: 

 

   
 

       
  

       

  
             e          B = 0. 

 

É necessário agora encontrar o vetor H que relaciona o estado ao valor da 

medida, considerando o ruído do sinal lido pelo sensor (  ). 

 

              
  

    
       (3.12) 

 

Logo,  

        

 

3.4.2. Modelo de onda irregular    

 

Neste capítulo, é apresentado o modelo matemático que descreve o 

movimento do menisco da onda irregular. O modelo de onda utilizado no 

desenvolvimento deste trabalho é baseado em uma aproximação linear de segunda 

ordem sugerida por Sælid, Jenssen e Balchen [5], a qual pode ser escrita da 

seguinte forma: 
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  (3.13) 

 

onde Kw representa o ganho e é dado por: 

 

                                                         (3.14) 

 

onde  , por sua vez, representa o coeficiente de amortecimento;    a frequência 

nominal e    a constante que descreve a intensidade da onda. 

 

Esses parâmetros são dimensionados de tal forma a se obter um espectro 

de frequência aproximado que possua uma distribuição de energia compatível com 

a do espectro de frequência PM, desenvolvido por Pierson e Moskowitz em 1963 

[5]. 

 

Dado o modelo que rege o movimento da onda e seus parâmetros, 

encontrados a partir da aproximação do espectro de frequência, pode-se escrever a 

equação da altura de onda na forma diferencial: 

 

                                                  
                 (3.15) 

 

onde      é a posição da superfície da água em relação ao nível zero (água parada) 

e o w(t) o ruído Gaussiano já mencionado anteriormente.  

 

Agora, trazendo a equação 3.15 para o tempo discreto, tem-se: 

 

              

   
          

       

  
    

      

 

                         
           

     
                

      
 

     
                

      (3.16) 

 

A equação 3.4 mostra que o estado    que se deseja estimar é definido a 

partir de dois estados anteriores      e     .  
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Por fim, escrevendo esta equação na forma matricial (Espaço de Estados), 

resulta: 

 

 
  

    
     

           

     
                

 
  

     
                

  
   

    

    
     

  

  
  (3.17) 

 

A partir desta modelagem, são obtidas as matrizes A e B da representação 

no Espaço de Estados do Filtro de Kalman: 

 

   
           

     
                

 
  

     
                

  
             e          B = 0. 

 

É necessário agora encontrar o vetor H do Filtro, que relaciona o estado ao 

valor da medida, considerando o ruído do sinal lido pelo sensor (  ). 

 

              
  

    
       (3.18) 

 

Logo,  

        

 

 
3.5. Cálculo da absorção de ondas 

 

Antes de enunciar a fórmula para cálculo da absorção, é importante 

entender a nomenclatura adotada por Schäffer [6] para as ondas. A figura 3.4 a 

seguir mostra as direções das ondas incidente, refletida e re-refletida: 
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Figura 3.4 – Nomenclatura de ondas 

 

Ou seja, é tomado como ponto de referência o modelo que está sendo 

ensaiado: onda incidente no modelo, refletida do modelo e re-refletida para o 

modelo. Para o cálculo da absorção, Schäffer [6] propõe a utilização da seguinte 

expressão para cálculo do coeficiente de re-reflexão: 

 

                                 
      

      
  (3.19) 

 

onde: 

 Ai : amplitude da onda incidente desejada teoricamente 

 Ãi : amplitude da onda incidente obtida na prática 

 Ãr : amplitude da onda refletida obtida na prática 

 

No caso em que há apenas absorção de ondas, Ai = 0. Ãi é diferente de zero, 

pois, como a função de transferência do controlador é obtida numericamente, a 

absorção de ondas, na prática, não é perfeita (embora teoricamente seria possível 

absorver 100% das ondas). Ãr é obtido pelas leituras dos sensores de altura de 

água no tanque.  

 

Na figura abaixo é mostrada a função de transferência do controlador. 

 

 

Figura 3.5 – Função de transferência do controlador de absorção, no Simulink 
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4. IMPLEMENTAÇÃO 

 

Para testar o algoritmo do Filtro de Kalman, foram elaborados programas, 

utilizando o software MATLAB, para fazer o pós-processamento de sinais 

adquirido pelos sensores em outubro de 2009. A captura do sinal é feita utilizando 

um arquivo *.mat que contém os dados dos ensaios realizados anteriormente. 

 

Além da codificação padrão do Filtro, uma nova estratégia foi incluída no 

algoritmo, como tentativa de se obter um filtro adaptativo. Embora o Filtro de 

Kalman tenha sido elaborado para absorver ruídos aleatórios com distribuição 

probabilística normal, os sinais ruidosos do tanque de provas tendem a seguir um 

padrão. Desta maneira, em alguns momentos a medição é boa, e em outros a 

medição apresenta ruído. Assim, a ideia proposta é avaliar a Inovação (diferença 

entre a estimativa inicial do Filtro e o sinal medido); sendo esta diferença maior 

que um determinado valor, o sensor é considerado ruidoso demais, e a estimativa 

final é avaliada dando maior peso ao modelo que à medição. De maneira inversa, se 

a diferença for menor que o valor estipulado, a estimativa final tem maior 

influência da medição. 

 

Os estudos preliminares do funcionamento do filtro, tanto para ondas 

regulares como irregulares, foram conduzidos de maneira offline. Uma vez 

verificada a viabilidade da utilização do Filtro e sua efetividade, foram 

desenvolvidos os programas para execução online do Filtro de Kalman. Nesta 

segunda fase, os programas implementam blocos que são incorporados à malha de 

controle do tanque de provas, que utiliza a ferramenta Simulink, do MATLAB, para 

sua operação. 
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4.1. Implementação para ondas regulares 

 

4.1.1. Implementação offline 

 

No ensaio analisado, os flaps de uma parede do tanque estão gerando 

ondas a 1 Hz e as outras três paredes estão fixas. A parede oposta à geradora 

recebe as ondas e realiza a medição das alturas de onda. 

 

A seguir é apresentada uma plotagem de um sinal ruidoso adquirido pelo 

sensor de ultrassom de um flap, que será objeto desta análise: 

 

 

Figura 4.1 - Sinal originalmente adquirido pelo sensor de ultrassom 

 

Percebe-se que o ruído é mais acentuado na subida da onda, e diversos 

pontos da medição são perdidos por conta deste problema.  Para visualizar melhor 

o sinal perdido, pode-se observar a figura 4.2, a seguir que mostra os sinais dos 

sensores adjacentes ao analisado. Como a onda é perpendicular à parede que está 

fazendo as medições, a altura de onda é a mesma para todos os flaps desta parede. 
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Figura 4.2 – Sinal medido do flap de interesse comparado com sinais dos flaps adjacentes 

 

Nota-se que sensor lateral-1 também apresenta medição ruidosa, porém o 

lateral+1 possui um sinal de boa qualidade. Fica evidente a perda de amplitude do 

sinal medido no flap de interesse. 

 

Até então, era utilizado um filtro passa baixas (do tipo Butterworth de 

segunda ordem, frequência de corte de aproximadamente 8 Hz) para tentar 

condicionar o sinal antes de sua entrada no algoritmo de absorção de ondas.  

 

O sinal filtrado pelo filtro Butterworth é mostrado a seguir, na figura 4.3. 

Nesta plotagem, pode-se observar que o sinal filtrado apresenta um atraso 

bastante significativo em relação ao original, da ordem de 30 ms, que é 

aproximadamente 3 vezes o período de amostragem (12 ms). Observando também 

a onda medida no flap adjacente, nota-se a perda de informação da amplitude da 

onda nos picos, igualmente significativa. No caso do primeiro pico mostrado, 

ocorre uma perda na amplitude de até 25 mm, sendo que a onda tem amplitude de 

aproximadamente 80 mm. 
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Figura 4.3 – Sinais medidos e sinal do filtro passa baixas 

 

Com a utilização do Filtro de Kalman, já foi possível melhorar bastante o 

resultado da medida. Diminuiu-se o atraso entre a medição e a estimativa para 

valores da ordem de 10 ms, e a perda de amplitude foi diminuída no mínimo pela 

metade, nas cristas da onda.  

 

Para atingir esses resultados, após a obtenção do modelo matemático e 

desenvolvimento do algoritmo do Filtro de Kalman, realizou-se uma bateria de 

testes desse algoritmo para possibilitar o ajuste dos parâmetros Q e R, que, como 

abordado anteriormente, representam a incerteza do modelo e ruído da medida, 

respectivamente.  

 

Os valores adotados para tais parâmetros são modificados ao decorrer da 

estimativa, de acordo com o resultado absoluto obtido pelo cálculo da inovação, a 

qual é obtida pela diferença entre o valor amostrado e o valor da medida estimado 

pelo Filtro de Kalman. Caso a inovação esteja dentro da faixa limite, também 

ajustada através de testes, a medida é considerada satisfatória e então é definido o 

valor Rbaixa para a covariância do erro de medida e Qalta para a covariância do erro 
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de modelagem. Já no caso em que a inovação excede a faixa limite, assume-se Ralta 

e Qbaixa. O modelo de análise aqui descrito permite que o algoritmo do Filtro de 

Kalman apresente um caráter adaptativo.  

 

Os valores utilizados no algoritmo desse trabalho encontram-se na tabela 

a seguir: 

 

Tabela 4.1 - Parâmetros ajustados para o algoritmo do Filtro de Kalman 

Rbaixa Ralta 
 

Qbaixa Qalta 

50 5000 
 

5 50 

 

As figuras a seguir mostram uma comparação entre a medição, a onda 

filtrada até então, e o resultado a que se pode chegar com a implementação do 

Filtro de Kalman: 

 

 

Figura 4.4 – Comparação entre sinal medido, sinal do filtro passa baixas  

e estimativa obtida pelo Filtro de Kalman 
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Figura 4.5 – Detalhe da comparação entre sinal medido, sinal do filtro passa baixas  

e estimativa obtida pelo Filtro de Kalman 

 

4.1.2. Implementação online 

 

A implementação online baseou-se no programa desenvolvido 

anteriormente (para a aplicação offline), com algumas alterações para possibilitar 

seu funcionamento como bloco no Simulink. A malha completa de controle do 

tanque de provas é mostrada na figura 4.5, abaixo: 

 

 

Figura 4.5 – Malha de controle do Calibrador Hidrodinâmico – Simulink 
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Além das alterações no software necessárias para a criação do bloco, 

destacado na figura anterior em vermelho, a diferença mais marcante do novo 

programa é que ele foi elaborado para poder fazer as operações matemáticas 

simultaneamente para mais de um flap. Isso foi realizado trabalhando-se com 

operações matriciais. Em vez de se utilizar um loop e fazer os cálculos para cada 

um dos flaps (o que tem tempo de processamento muito elevado), monta-se as 

matrizes do algoritmo contendo sub-matrizes correspondentes a cada um dos flaps 

utilizados, localizadas na diagonal das matrizes. As outras posições da matriz são 

preenchidas com zeros. Por exemplo, para a matriz de estados, A, o resultado fica: 

 

  

 
 
 
 
 
 
 
 
 
  

 

       
 

       

  

 
                   
                   

                   
                   

 
 

       
 

       

  

 

  
                    
                  

  
 

       
 

  

                                                   
                                                                
                                                                   

 

  

  
 

       
 

       

  

 
 
 
 
 
 
 
 
 
 
 

 

 

Já a matriz H fica:  

 

   

      

      
     
     

     
       

  
       

  

 

A criação destas matrizes, bem como o algoritmo utilizado no Filtro de 

Kalman, podem ser verificados em mais detalhes na seção 8. 

 

4.2. Implementação para ondas irregulares 

 

A implementação offline para ondas irregulares segue os mesmo conceitos 

utilizados no caso das ondas regulares. O mesmo algoritmo do Filtro de Kalman, 

utilizado anteriormente neste trabalho, também pode ser aplicado para este caso 

com ondas irregulares, necessitando apenas a alteração das matrizes do modelo. 
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4.2.1. Implementação offline 

 

A seguir, na figura 4.6, é apresentada a plotagem de uma onda irregular, 

tirada de uma média dos sensores de uma parede do CH-TPN. 

 

 

Figura 4.6 – Onda irregular avaliada pela média dos sensores de uma parede do CH-TPN 

 

Com base neste sinal de onda, e utilizando os seguintes valores para os 

parâmetros do modelo descrito na seção 3.4.2, é possível gerar os espectros de 

frequência de onda apresentados na figura 4.7, em seguida. 
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Figura 4.7 – Espectro de frequência para a onda irregular  

 

Cabe frisar que a obtenção dos parâmetros é conduzida de forma empírica, 

sendo ajustados sucessivamente até que a curva seja compatível com o espectro 

calculado para a onda medida. Este processo busca a validação dos parâmetros 

calibrados a serem utilizados pelo modelo matemático. Feito isso, pode-se partir 

para a utilização do Filtro de Kalman. 

 

A figura a seguir mostra uma comparação entre a medição, a onda filtrada 

atualmente, e o resultado que se pode chegar com a implementação do Filtro de 

Kalman: 

 

Figura 4.8 - Detalhe da comparação entre sinal medido e estimativa obtida pelo Filtro de Kalman 
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Assim como no caso de ondas regulares, visto anteriormente, com a 

utilização do Filtro de Kalman é possível melhorar o resultado da medida, 

reduzindo os ruídos de medida e diminuindo o atraso do sinal quando comparado 

a outros tipos de filtro. 

 

Para atingir estes resultados, após a obtenção do modelo matemático e 

desenvolvimento do algoritmo do Filtro de Kalman, realizou-se novamente o ajuste 

dos parâmetros Q e R do Filtro, que, como abordado anteriormente, representam a 

incerteza do modelo e ruído da medida, respectivamente.  

 

Os valores utilizados no algoritmo desse trabalho encontram-se na tabela a 

seguir: 

 

Tabela 2 - Parâmetros ajustados para o algoritmo do Filtro  

        de Kalman utilizado em ondas irregulares 

Rbaixo Rbaixo  Qbaixo Qalto 

500 50000  5 50 

 

4.2.2. Implementação online 

 

A implementação online do Filtro para ondas irregulares seguiu a mesma 

sequência adotada para ondas regulares (seção 4.1.2). Os resultados desta 

implementação estão apresentados no capítulo 5. 

 

4.3. Problemas encontrados nas implementações online 

 

Durante a implementação online percebeu-se que o tempo de execução do 

algoritmo do Filtro de Kalman é relativamente grande, e aumenta com o número 

de flaps utilizando o Filtro. Dependendo deste, podem ocorrer atrasos de 

comunicação entre o computador de controle e os CLPs.  

 

Após a primeira versão do programa para execução de absorção online para 

ondas regulares, era somente possível trabalhar com cerca de 10 flaps 



29 
 

simultaneamente. Como o programa já estava bastante enxuto, contendo apenas os 

cálculos essenciais para o funcionamento do filtro, foi necessário pensar em 

alguma outra estratégia para atacar o problema. 

 

Para melhorar o desempenho do programa do Filtro, foi adotada a ideia de 

utilizar o processador da placa gráfica do computador que controla os CLPs do 

tanque, que tem suporte à tecnologia CUDA (disponível nos processadores da 

NVIDIA [8]). Desta forma, alguns cálculos do Filtro são realizados na placa de vídeo 

(GPU), que tem desempenho superior ao processador do computador (CPU) para 

alguns tipos de cálculos. Para possibilitar a utilização do CUDA pelo MATLAB, 

utilizou-se o software Jacket, fornecido pela AccelerEyes [9]. Todavia, nesta 

topologia tem-se um tempo adicional que corresponde à transferência de dados 

entre a CPU e a GPU, e vice versa. 

 

Após testes, chegou-se a uma relação que minimizou o tempo de 

processamento do Filtro de Kalman, enviando apenas alguns cálculos matriciais 

para a GPU. Com este avanço, foi possível utilizar o Filtro para uma parede 

completa (37 flaps simultaneamente). 

 

Embora seja um avanço importante, para possibilitar a utilização do Filtro 

simultaneamente em todas as paredes do tanque suspeita-se que são necessárias 

alterações em hardware (investimento num computador com maior capacidade de 

processamento, mais rápido, já que os CLPs do tanque não podem ser trocados tão 

facilmente) ou utilizar o cluster do TPN, que possibilita paralelizar cálculos e assim 

reduzir o tempo de processamento. Apesar de estas opções fugirem do escopo 

deste trabalho, poderiam ser exploradas em trabalhos posteriores neste tema. 

 

Outra solução que possibilitou a utilização do Filtro para uma parede 

completa foi a remoção do algoritmo de adaptatividade. Embora esta decisão tenha 

diminuído a qualidade da filtragem (em comparação com os estudos preliminares 

onde este recurso estava presente), a economia em tempo de processamento foi 

crucial. Também não foi implementada de forma online a utilização de mais de um 

sensor por batedor, pelos mesmos motivos discutidos acima. 
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5. AVALIAÇÃO DA ABSORÇÃO 

 

5.1. Análise qualitativa 

 

Nesta análise foram feitos ensaios de onda regular para 4 frequências 

diferentes. Uma comparação do sinal de entrada e saída do Filtro de Kalman é feita 

nas figuras 5.1 a 5.4, a seguir. 

 

 

Figura 5.1 - Comparação entre sinais antes e depois do Filtro de Kalman (0,75 Hz) 

 

 

 

Figura 5.2 - Comparação entre sinais antes e depois do Filtro de Kalman (1,00 Hz) 
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Figura 5.3 - Comparação entre sinais antes e depois do Filtro de Kalman (1,25 Hz) 

 

 

 

Figura 5.4 - Comparação entre sinais antes e depois do Filtro de Kalman (1,50 Hz) 

 

Pelos gráficos, percebe-se que conforme a frequência de onda gerada 

aumenta, o atraso entre o sinal real e o estimado pelo Filtro também aumenta. 

Além disso, conforme aumenta a frequência, o ruído na altura de onda também 

aumenta, contribuindo ainda mais para a diminuição da qualidade do sinal. 

 

Alem dos ensaios com ondas regulares, foi feito também um ensaio com 

onda irregular, que é mostrado na figura 5.5. 
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Figura 5.5 - Comparação entre sinais antes e depois do Filtro de Kalman (onda irregular) 

 

Semelhantemente ao resultado obtido para ondas regulares, tem-se um 

pequeno atraso em relação ao sinal original, porém uma boa diminuição nos 

ruídos. 

 

5.2. Análise do coeficiente de re-reflexão 

 

Após a análise qualitativa, é necessário se obter em números o quanto de 

melhoria a utilização do Filtro de Kalman pode proporcionar para o sistema. Com o 

intuito de avaliar objetivamente a absorção de ondas, utilizou-se o método 

proposto por Schäffer [6], já discutido na seção 3.5.  

 

Para ondas regulares, foram feitas duas análises. Em cada uma, foram 

realizados 4 ensaios, com ondas de frequências 0,75, 1,00, 1,25 e 1,50 Hz. A 

primeira análise considerou o mapeamento dos sensores até então utilizado no 

tanque. Na segunda, este mapeamento foi removido e todos flaps estavam atuando 

de acordo com as medições de seus respectivos sensores. Os coeficientes de re-

reflexão calculados são evidenciados no gráfico a seguir. Ressaltando que o 

coeficiente de re-reflexão corresponde a parcela das ondas que não foram 

absorvidas, o desejado é que estes valores sejam tão baixos quanto possível. 
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Figura 5.6 - Coeficiente de re-reflexão em função da frequência para ondas regulares 

 

Deste gráfico resulta uma implicação muito importante para a aplicação do 

Filtro de Kalman neste trabalho. Como se pode observar, mesmo com a remoção do 

mapeamento dos sensores, ou seja, mesmo utilizando sensores mais ruidosos, a 

efetividade do Filtro de manteve praticamente constante. Portanto, o Filtro de 

Kalman pode ser utilizado para absorção de ondas com direção diferente da 

perpendicular à parede que está absorvendo com vantagem sobre o filtro passa 

baixas usado até então.  

 

Já para ondas irregulares, foram feitos alguns ensaios com o filtro 

Butterworth e com o Filtro de Kalman e levantadas as curvas do coeficiente de re-

reflexão em função da frequência, na região de operação do CHTPN. Os resultados 

são mostrados a seguir. 
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Figura 5.7 - Coeficiente de re-reflexão em função da frequência para ondas irregulares 

 

Pode-se perceber que o Filtro de Kalman apresenta melhora significativa 

na absorção em algumas faixas de frequência, porém não no espectro todo. 

Ampliando o gráfico numa região mais utilizada nos ensaios, ficam mais evidentes 

os trechos em que o Filtro de Kalman supera o filtro passa baixas em desempenho. 

 

 

Figura 5.8 – Detalhe do coeficiente de re-reflexão em função da frequência para ondas irregulares 

 

Constata-se então que a absorção depende da escolha cautelosa dos 

parâmetros do Filtro. Faz-se então necessária a realização de uma análise de 
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sensibilidade para a escolha correta destes parâmetros, como será visto na seção 

seguinte. 

 

5.3. Sensibilidade dos parâmetros do Filtro de Kalman 

 

Para se determinar a sensibilidade do Filtro de Kalman à variação nos 

parâmetros Q e R, foram calculados os coeficientes de re-reflexão, em função da 

frequência, para algumas combinações deles. O resultado desta análise é melhor 

representado no gráfico mostrado a seguir. 

 

 

Figura 5.9 - Coeficiente de re-reflexão em função da frequência para ondas irregulares  

para diversas combinações de parâmetros do Filtro de Kalman 

 

Após a visualização dos resultados, fica claro que a melhor combinação de 

parâmetros para o Filtro de Kalman deve ser escolhida de acordo com o espectro 

de ondas que será gerado. Caso este filtro seja realmente incorporado ao sistema 

de controle do tanque, seria possível realizar uma bateria de ensaios para se obter 

mais curvas do coeficiente de re-reflexão e, posteriormente, criar uma base de 

dados que selecione estes parâmetros automaticamente toda vez que as séries 

temporais das ondas são geradas no computador de controle.  
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6. CONCLUSÃO 

 

A utilização do Filtro de Kalman mostrou-se uma opção bastante 

interessante para solucionar o problema de ruído e distorção dos sinais de altura 

de onda. Entretanto, ainda há desafios a serem vencidos no que diz respeito ao 

tempo de execução do algoritmo do Filtro dentro da malha de controle do CH-TPN. 

 

A possibilidade de se utilizar a placa gráfica do computador de controle 

para realização de alguns cálculos mostrou-se uma opção interessante para 

diminuir o tempo de processamento do Filtro, porém suficiente apenas para 

funcionamento de uma parede completa do tanque.  

 

Mesmo com as restrições de tempo de processamento apresentadas, os 

resultados obtidos com a utilização do Filtro de Kalman indicaram uma suavização 

satisfatória dos ruídos. Obteve-se ainda a redução do atraso do sinal de altura de 

onda, o que contribuiu consideravelmente com a melhoria, comprovada, das taxas 

de absorção quando comparadas com as taxas do filtro Butterworth. É importante 

lembrar que tal melhoria foi, desde o início, o principal objetivo deste trabalho. 

 

A implementação do Filtro de Kalman destaca-se, também, por possibilitar 

a remoção do mapeamento de sensores até então existente, o que permitirá a 

absorção de ondas em todas as direções. 

 

 Por fim, tendo em mente que problemas como velocidade de 

processamento podem ser vencidos, por exemplo, com o avanço da tecnologia ou 

investimento em um computador mais rápido para execução do controle do 

tanque, o Filtro de Kalman apresenta-se como uma interessante solução capaz de 

melhorar as taxas de absorção do CH-TPN a níveis compatíveis com os de projeto 

do mesmo, independentemente de ensaios que utilizem, simultaneamente, mais de 

uma parede para absorção de ondas. 
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ANEXO 

 

Programa para teste preliminar offline de ondas 

regulares 

 

A seguir, é apresentado o programa, escrito em linguagem MATLAB, que 

implementa o Filtro de Kalman para uma série temporal já adquirida e 

armazenada em arquivo *.mat . Com este programa é possível testar a efetividade 

do Filtro de maneira offline. 

 

% Algoritmo do Filtro de Kalman - MATLAB 
% 
function out = kalman_onda_real(canal, f, fa, onda, onda_f) 
  
clc;            % limpa o prompt de comando 
  
% Declaração de variáveis 
  
f = 1;          % frequência da onda 
omega = 2*pi*f; % frequência angular da onda 
  
fa = fa;        % frequência de amostragem 
Ta = 1/fa;      % período de amostragem 
  
t = (1:(length(onda)))*Ta;  % vetor de tempo 
  
z1 = onda(:,canal);         % sensor do flap de interesse 
z2 = onda(:,canal-1);       % sensores dos flaps adjacentes 
z3 = onda(:,canal+1);       %  
  
% Declaração das matrizes para o algoritmo do Filtro de Kalman 
  
A = [2/(1+(omega*Ta)^2) -1/(1+(omega*Ta)^2); 1 0];  % (2x2) 
  
H = [1 0; 1 0; 1 0];                                % (3x2) 
  
 
Qbaixa = 5;     % covariância do ruído de processo 
Qalta = 50;     % valores para covariância baixa e alta já pré-estabelecidos 
  
Rbaixa = 500;   % covariância do ruído de mediada 
Ralta = 5000;   % valores para covariância baixa e alta já pré-estabelecidos 
  
% Atribuição inicial de valores de covariância 
Q = [Qbaixa]; 
  
R = [Ralta     0      0 ;   % matriz de covariância do ruído de mediada 
     0     Ralta      0 ;   % 3x3 
     0         0  Ralta];   % 
  
I = eye(2);                 % matriz identidade 2x2 
  
% Condição inicial para execução do algoritmo: 
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X = [0; 0]; 
P = [1000]; 
 
 for k = 1:length(z1) 
     
% Predição  
    X_ = A * X;                     % estimativa a priori 
    P_ = A * P * A' + Q;            % covariância do erro (2x2) 
  
% Correção  
    Z = [z1(k); z2(k); z3(k)];      % aquisição pelo sensor 
     
    % Algoritmo de correção adaptativa das covariâncias de erro 
    % (experimental) 
    if k>=3                              
        inovacao = Z - H * X_;      % cálculo da inovação (3x2) 
         
        for i=1:3           % varredura da diagonal da matriz R 
            j = 0;          % variável auxiliar             
            if (abs(inovacao(i)) > 5) % caso a inovação supere 5 mm 
                R(i,i) = Ralta;       % para cada sensor, o valor de R 
                j = j+1;              % é considerado alto, e o número de  
            else                      % sensores ruidosos é incrementado 
                R(i,i) = Rbaixa; 
            end 
             
            if(j>=2) % aqui é avaliado a possibilidade de 2 ou 3 sensores 
                Q = Qbaixa; % fornecerem sinais ruidosos; neste caso o ruído de 
            else            % de processo é diminuído, dando maior peso à planta 
                Q = Qalta;  % na estimativa 
            end 
        end 
    end 
     
    K = P_ * H' / (H * P_ * H' + R); % ganho de Kalman 
     
    X = X_ + K * (Z - H * X_);       % estimativa a posteriori 
    P = (I - K * H) * P_;            % covariância do erro 
     
    x1(k) = X(1,1);     % armazenamento das estimativas 
    K1(k) = K(1,1);     % armazenamento dos ganhos de Kalman 
end 
  
% Plotagem do resultado das medições e estimativas 
figure(1); 
plot   ( t,              z1, '-m',... % plotagem da onda medida; 
         t, onda(:,canal-1), ' r',... % plotagem das medidas de flaps 
         t, onda(:,canal+1), ' g',... % adjacentes; 
         t, onda_f(:,canal), ' k',... % plotagem da onda filtrada; 
         t,              x1, '-b');   % plotagem da estimativa 
legend ('onda medida','lateral -1','lateral +1','onda filtrada','onda estimada'); 
title  ('Filtro de Kalman'); 
xlabel ('Tempo (s)'); 
ylabel ('Amplitude (mm)'); 
grid; 
 
            % Fim do programa 
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Programa para operação online via Simulink de ondas 

regulares 

 

Aqui, após o código de inicialização das matrizes para o algoritmo do Filtro 

e outras constantes pertinentes, é apresentado o programa elaborado para a 

incorporação do Filtro ao sistema já em utilização no Calibrador Hidrodinâmico. 

Este código é chamado pelo bloco do Simulink responsável pela filtragem do sinal 

de medição de altura.  

 

% Algoritmo de inicialização 
% 
clear; 
  
amp = 50;               % Amplitude de onda (em mm) 
f = .75;                % Frequencia da onda (em Hz) 
omega = 2 * pi * f;     % Frequencia angular da onda 
Ta = .012;              % Periodo de amostragem (em s) 
  
nflaps = 2;             % Número de flaps a serem filtrados 
  
% Criação da matriz A do Filtro de Kalman 
for i=1:nflaps 
    A( 2*i-1:2*i , 2*i-1:2*i ) = [2/(1+(omega*Ta)^2) -1/(1+(omega*Ta)^2) 
                                                  1                   0]; 
end 
A = sparse(A); 
  
% Criação da matriz H do Filtro de Kalman 
for i=1:nflaps 
    H( i , 2*i-1:2*i ) = [1 0]; 
end 
H = sparse(H); 
  
% Função que cria as séries temporais para acionamento dos servo motores 
[Posicao,WorkFreq,vel_us,T,b,a,benv,aenv] = ...  
                               regular([1.625 4.1 1.21],0.012,20,2,2,f,(amp/1000),0); 

                                                              
                                                             % Fim do programa 
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% Algoritmo do Filtro de Kalman - Simulink MATLAB 
% 
function FiltroKalman(block) 

 
    setup(block); 
end 
  
function setup(block)   % Função de configuração de entradas e saídas 

 
    block.NumDialogPrms  = 6; 
    block.NumInputPorts  = 1; 
    block.NumOutputPorts = 1;  
    block.SetPreCompInpPortInfoToDynamic; 
    block.SetPreCompOutPortInfoToDynamic;     
    block.InputPort(1).DirectFeedthrough = false; 
    block.InputPort(1).Dimensions = 148;     
    block.OutputPort(1).Dimensions = 148; 
    block.SampleTimes = [-1 0];     
    block.SimStateCompliance = 'DefaultSimState';  
    block.RegBlockMethod('PostPropagationSetup', @DoPostPropSetup); 
    block.RegBlockMethod('InitializeConditions', @InitConditions); 
    block.RegBlockMethod('Outputs',              @Output); 
end 
   
function DoPostPropSetup(block) % Função de configuração da memória interna  
                                % (para armazenar informações para a próxima iteração) 
    nflaps = block.DialogPrm(1).Data; 
    block.NumDworks                = 2;     
    block.Dwork(1).Name            = 'X'; 
    block.Dwork(1).Dimensions      = 2*nflaps; 
    block.Dwork(1).DatatypeID      = 0; 
    block.Dwork(1).Complexity      = 'Real'; 
    block.Dwork(1).UsedAsDiscState = true;     
    block.Dwork(2).Name            = 'P'; 
    block.Dwork(2).Dimensions      = 4*nflaps^2; 
    block.Dwork(2).DatatypeID      = 0; 
    block.Dwork(2).Complexity      = 'Real'; 
    block.Dwork(2).UsedAsDiscState = true; 
end 
 
function InitConditions(block)   % Função de inicialização   

 
    % Variáveis globais  
    global nflaps A H Qref Rref InovAlta I Q R K X_ X P P_ inovacao Z Xsaida UMSQ UMSR; 
     
    % Inicialização     
    nflaps   = block.DialogPrm(1).Data; 
    A        = block.DialogPrm(2).Data; 
    H        = block.DialogPrm(3).Data; 
    Qref     = block.DialogPrm(4).Data; 
    Rref     = block.DialogPrm(5).Data; 
    InovAlta = block.DialogPrm(6).Data; 
     
    I = eye(2*nflaps);      % matriz identidade (2n x 2n) 
    UMSQ = ones(2*nflaps);  % matriz identidade (2n x 2n) 
    UMSR = ones(nflaps);    % matriz identidade (2n x 2n) 
    Q = eye(2*nflaps) * Qref(2); %    [Qbaixa Qalta] 
    R = eye(nflaps) * Rref(1);   %    [Rbaixa Ralta] 
     
    block.Dwork(1).Data = zeros(1,2*nflaps);            % X 
    block.Dwork(2).Data = zeros(1,4*nflaps^2)+1000;     % P 
end 
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function Output(block) % Função principal do Filtro de Kalman 

 
    % Variáveis globais 
    global nflaps A H Qref Rref InovAlta I Q R K X_ X P P_ inovacao Z Xsaida  UMSQ UMSR; 
  
    Z = block.InputPort(1).Data(1:nflaps);  % o bloco adquire todos os sinais 
                                            % de um determinado passo ao mesmo 
                                            % tempo 
    X = block.Dwork(1).Data; % X = [ [x^(k-1); x^(k-2)]flap1; [x^(k-1); x^(k-2)]flap2;...]; 
    P = reshape(block.Dwork(2).Data, 2*nflaps, 2*nflaps); % Matriz de covariância P 
     
    % Predição 
    X_ = A * X;                        % estimativa a priori 
    inovacao = Z - H * X_; 

 
    % Algoritmo de adaptatividade (EXPERIMENTAL) 
        first = find(inovacao>InovAlta)* 2 -1; 
        second = find(inovacao>InovAlta)* 2; 
        V = union(first,second); 
        W = second/2; 
        Q = (Q.*(UMSQ-sparse(V,V,1,2*nflaps,2*nflaps))) + ... 
             sparse(V,V,Qref(1),2*nflaps,2*nflaps); 
        R = (R.*(UMSR-sparse(W,W,1,nflaps,nflaps))) + ... 
             sparse(W,W,Rref(2),nflaps,nflaps); 
  
    P_ = A * P * A' + Q;                % covariância do erro 

 
    % Correção 
    K = P_ * H' / (H * P_ * H' + R);    % ganho de Kalman 
    X = X_ + K * (inovacao);            % estimativa a posteriori 
    P = (I - K * H) * P_;               % covariância do erro 
     
    block.Dwork(2).Data = reshape(P,1,[]); 

 
    % Saída de dados 
    Xsaida = reshape(X,2,[]); 
    Xsaida(nflaps,(nflaps+1):148) = zeros(1,(148 - nflaps)); 
    block.OutputPort(1).Data = Xsaida(1,:); 

 
    % Armazenamento dos vetores para o próximo passo 
    block.Dwork(1).Data = X; 
end 
 
                     % Fim do programa 
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Programa para teste preliminar offline de ondas 

irregulares 

 

A seguir, é apresentado o programa, escrito em linguagem MATLAB, que 

implementa o Filtro de Kalman para uma série temporal já adquirida e 

armazenada em arquivo *.mat . Com este programa é possível testar a efetividade 

do Filtro de maneira offline para ondas irregulares. 

 

% Algoritmo do Filtro de Kalman para onda irregular  
 
function kalman_offline_irregular_TPN(onda, w0, zeta, t) 
  
clc;            % limpa o prompt de comando 
  
figure(1); 
plot(t, onda); 
legend('Onda medida'); 
  
flap = 31; 
T = .012; 
  
z = onda(:,flap);         % sensor do flap de interesse 
  
% Declaração das matrizes para o algoritmo do Filtro de Kalman 
  
A = [(2+2*zeta*w0*T)/(1 + w0^2*T^2 + 2*zeta*w0*T) -1/(1 + w0^2*T^2 + 2*zeta*w0*T) 
      1 0]; 
  
H = [1 0]; 
  
Qbaixa = 5;     % covariância do ruído de processo 
Qalta = 50;     % valores para covariância baixa e alta já pré-estabelecidos 
  
Rbaixa = 500;   % covariância do ruído de mediada 
Ralta = 50000;   % valores para covariância baixa e alta já pré-estabelecidos 
  
InovAlta = 50; 
  
I = eye(2);     % matriz identidade 2x2 
Q = Qalta; 
R = Rbaixa; 
  
% Q = 5; 
% R = 500; 
  
  
% Condição inicial para execução do algoritmo: 
    X = [0; 0]; 
    P = 1000; 
  
for k = 1:length(z) 
     
% Predição 
  
    X_ = A * X;                        % estimativa a priori 
    P_ = A * P * A' + Q;                % covariância do erro (2x2) 
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% Correção 
  
    Z = z(k);          % aquisição pelo sensor 
         
    inov(k) = Z - H * X_; 
     
    if (k > 1) 
        if (abs(inov(k)) > InovAlta) 
            R = Ralta; 
            Q = Qbaixa; 
            disp(k) 
        else 
            R = Rbaixa; 
            Q = Qalta; 
        end 
    end 
     
    K = P_ * H' / (H * P_ * H' + R);    % ganho de Kalman 
     
    X = X_ + K * (inov(k));             % estimativa a posteriori 
    P = (I - K * H) * P_;               % covariância do erro 
     
    x1(k) = X(1,1);     % armazenamento das estimativas 
end 
  
% Plotagem do resultado das medições e estimativas 
figure(2); 
plot   ( t, onda(:,flap),...    % plotagem da onda medida; 
         t,           x1);      % plotagem da estimativa   
legend ('onda medida',... 
        'onda estimada'); 
title  (['Filtro de Kalman para onda irregular; Flap: ', num2str(flap+75)]); 
xlabel ('Tempo (amostras)'); 
ylabel ('Amplitude'); 
grid; 
  

% Fim do programa 
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Programa para operação online via Simulink de ondas 

irregulares 

 

Aqui, após o código de inicialização das matrizes para o algoritmo do Filtro 

e outras constantes pertinentes, é apresentado o programa elaborado para a 

incorporação do Filtro ao sistema já em utilização no Calibrador Hidrodinâmico. 

Este código é chamado pelo bloco do Simulink responsável pela filtragem do sinal 

de medição de altura.  

 

% Filtro de Kalman para Onda Irregular – programa de inicialização 
  
% Carregar ensaio: 
clear all; 
  
[Posicao,WorkFreq,vel_us,T,b,a,benv,aenv]=... 
    longcrested([1.625 4.1 1.21],0.012,2*60,2,2, ... 
                'Jonswap1',1.66,0.092,1.611,180,5,0.5,1); 
  
onda = Posicao.signals.values(:,1);     % carrega onda 
t = length(onda);                       % vetor de tempo 
  
% Plotagem da onda medida 
figure(1); 
plot(t, onda); 
grid; 
  
% Espectro da onda medida (Power, omega) 
[P,w] = pwelch(onda); 
  
% Parâmetros da função de transferência teórica do sistema 
zeta = 0.05; 
w0 = 0.205; 
sw = 40; 
Kw = 2 * zeta * w0 * sw; 
h = tf([Kw 0], [1 2*zeta*w0 w0^2]); 
  
% Cálculo do espectro do sistema 
[mag fase wh] = bode(h); grid; 
  
Ph = zeros(length(mag)); 
for i=1:length(mag) 
    Ph(i) = mag(1,1,i); 
end 
  
% Plotagem dos espectros da onda medida e sistema teórico 
figure(4); 
% semilogx(w, P, wh, Ph, 'r'); 
plot(w, P, wh, Ph(:,1), 'r'); grid; 
xlim([0.1 0.5]); 
legend('Onda medida', 'Sistema teórico'); 
xlabel('\omega'); 
ylabel('PSD'); 

% Fim do programa  
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% Filtro de Kalman para Onda Irregular – bloco Simulink 
  
function FiltroKalman_Irregular_jacket(block) 
    setup(block); 
end 
  
function setup(block) 
    block.NumDialogPrms  = 4; 
   
    %% Register number of input and output ports 
    block.NumInputPorts  = 1; 
    block.NumOutputPorts = 1; 
  
    %% Setup functional port properties to dynamically 
    block.SetPreCompInpPortInfoToDynamic; 
    block.SetPreCompOutPortInfoToDynamic; 
     
    block.InputPort(1).DirectFeedthrough = false; 
    block.InputPort(1).Dimensions = 148; 
     
    block.OutputPort(1).Dimensions = 148; 
    %% Set block sample time to inherited 
    block.SampleTimes = [-1 0]; 
     
    %% Set the block simStateComliance to default (i.e., same as a built-in block) 
    block.SimStateCompliance = 'DefaultSimState'; 
  
    %% Register methods 
    block.RegBlockMethod('PostPropagationSetup', @DoPostPropSetup); 
    block.RegBlockMethod('InitializeConditions', @InitConditions); 
    block.RegBlockMethod('Outputs',              @Output); 
end 
   
function DoPostPropSetup(block) 
    %% Setup Dwork 
    nflaps = block.DialogPrm(1).Data(2); 
     
    block.NumDworks                = 2; 
     
    block.Dwork(1).Name            = 'X'; 
    block.Dwork(1).Dimensions      = 2*nflaps; 
    block.Dwork(1).DatatypeID      = 0; 
    block.Dwork(1).Complexity      = 'Real'; 
    block.Dwork(1).UsedAsDiscState = true; 
     
    block.Dwork(2).Name            = 'P'; 
    block.Dwork(2).Dimensions      = 4*nflaps^2; 
    block.Dwork(2).DatatypeID      = 0; 
    block.Dwork(2).Complexity      = 'Real'; 
    block.Dwork(2).UsedAsDiscState = true; 
end 
   
function InitConditions(block)     
    global iflap nflaps A H Qref Rref InovAlta I Qst Rst UMSQ UMSR; 
    %% Initialize Dwork 
     
      iflap  = block.DialogPrm(1).Data(1); 
      nflaps = block.DialogPrm(1).Data(2); 
           A = block.DialogPrm(2).Data; 
           H = block.DialogPrm(3).Data; 
        Qref = block.DialogPrm(4).Data(1:2); 
        Rref = block.DialogPrm(4).Data(3:4); 
    InovAlta = block.DialogPrm(4).Data(5); 
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    I = eye(2*nflaps);  % matriz identidade (2n x 2n) 
    UMSQ = eye(2*nflaps);  % matriz identidade (2n x 2n) 
    UMSR = eye(nflaps);  % matriz identidade (2n x 2n) 
    Qst = eye(2*nflaps) * Qref(2); %    [Qbaixa Qalta] 
    Rst = eye(nflaps) * Rref(1); %      [Rbaixa Ralta] 
     
    block.Dwork(1).Data = zeros(1,2*nflaps);            % X 
    block.Dwork(2).Data = zeros(1,4*nflaps^2)+1000;     % P 
  
end 
  
function Output(block) 
   %% Filtro de Kalman 
    global iflap nflaps A H Qref Rref InovAlta I Qst Rst K X_ X P P_ inovacao Z 
Xsaida  UMSQ UMSR; 
     
    Z = (block.InputPort(1).Data(iflap:(iflap + nflaps - 1)));  % o bloco adquire                  
                                                                % todos os sinais 
                                               % de um determinado passo ao mesmo 
                                               % tempo 
  
    % X = [ [x^(k-1); x^(k-2)]flap1 ; [x^(k-1); x^(k-2)]flap2; ... ]; 
    X = (block.Dwork(1).Data); 
  
    % Matriz de covariância P (uma matriz para cada flap) 
    P = (reshape(block.Dwork(2).Data, 2*nflaps, 2*nflaps)); 
     
    % Predição 
    X_ = A * X;                        % estimativa a priori 
  
    inovacao = (Z - H * X_); 
  
    % Algoritmo de adaptatividade (EXPERIMENTAL) 
        first = find(inovacao >InovAlta)* 2 -1; 
        second = find(inovacao >InovAlta)* 2; 
        V = union(first,second); 
        W = second/2; 
  
        Q = ((Qst.*(UMSQ-sparse(V,V,1,2*nflaps,2*nflaps))) + ... 
            sparse(V,V,Qref(1),2*nflaps,2*nflaps)); 
        R = ((Rst.*(UMSR-sparse(W,W,1,nflaps,nflaps))) + ... 
            sparse(W,W,Rref(2),nflaps,nflaps)); 
  
        P_ = gsingle(A * P * A' + Q);               % covariância do erro 
  
    % Correção 
    K = double(P_ * H') / double(H * P_ * H' + R);  % ganho de Kalman 
    X = (X_ + K * (inovacao));                      % estimativa a posteriori 
    P = double((I - K * H) * P_);                   % covariância do erro 
     
    block.Dwork(2).Data = reshape(P,1,[]); 
  
    % Saída de dados 
    Xsaida = zeros(2,148); 
    Xsaida(:,iflap:(iflap + nflaps - 1)) = reshape(X,2,[]); 
  
    block.OutputPort(1).Data = Xsaida(1,:); 
  
    % Armazenamento dos vetores para o próximo passo 
    block.Dwork(1).Data = X;     
end 

% Fim do programa 

 


